OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 6 — Jun. 1, 2012
  • pp: 503–513

Energy Implications of Photonic Networks With Speculative Transmission

Philip M. Watts, Simon W. Moore, and Andrew W. Moore  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 6, pp. 503-513 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speculative transmission has been proposed to overcome the high latency of setting up end-to-end paths through photonic networks for computer systems. However, speculative transmission has implications for the energy efficiency of the network, in particular, control circuits are more complex and power hungry and failed speculative transmissions must be repeated. Moreover, in future chip multiprocessors (CMPs) with integrated photonic network end points, a large proportion of the additional energy will be dissipated on the CMP. This paper compares the energy characteristics of scheduled and speculative chip-to-chip networks for shared memory computer systems on the scale of a rack. For this comparison, we use a novel speculative control plane which reduces energy consumption by eliminating duplicate packets from the allocation process. In addition, we consider photonic power gating to reduce processor chip energy dissipation and the energy impact of the choice between semiconductor optical amplifier and ring resonator switching technologies. We model photonic network elements using values from the published literature as well as determine the power consumption of the allocator and network adapter circuits, implemented in a commercial low leakage 45 nm CMOS process. The power dissipated on the CMP using speculative networks is shown to be roughly double that of scheduled networks at saturation load and an order of magnitude higher at low loads.

© 2012 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Research Papers

Original Manuscript: December 2, 2011
Revised Manuscript: April 6, 2012
Manuscript Accepted: May 1, 2012
Published: May 22, 2012

Virtual Issues
June 26, 2012 Spotlight on Optics

Philip M. Watts, Simon W. Moore, and Andrew W. Moore, "Energy Implications of Photonic Networks With Speculative Transmission," J. Opt. Commun. Netw. 4, 503-513 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and the end of multicore scaling,” in Proc. of the 38th Annu. Int. Symp. on Computer Architecture, 2011.
  2. J. L. Shin, H. Dawei, B. Petrick, H. Changku, K. W. Tam, A. Smith, H. Pham, H. Li, T. Johnson, F. Schumacher, A. S. Leon, and A. Strong, “A 40 nm 16-core 128-thread SPARC SoC processor,” IEEE J. Solid-State Circuits, vol. 46, pp. 131–144, 2011. [CrossRef]
  3. U. Vlasov, “Silicon photonics for next generation computing systems,” in European Conf. on Optical Communications (ECOC), 2008.
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, pp. 1166–1185, 2009. [CrossRef]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010. [CrossRef]
  6. I. H. White and R. V. Penty, “Optical interconnects for backplane and chip-to-chip photonics,” in 2nd ACM/IEEE Int. Symp. on Networks-on-Chip (NOCS ’08), 2008.
  7. J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, “Three-dimensional silicon integration,” IBM J. Res. Dev., vol. 52, no. 6, pp. 553–569, 2008. [CrossRef]
  8. A. Shacham and K. Bergman, “Building ultralow-latency interconnection networks using photonic integration,” IEEE Micro, vol. 27, no. 4, pp. 6–20, 2007. [CrossRef]
  9. I. Iliadis and C. Minkenberg, “Performance of a speculative transmission scheme for scheduling-latency reduction,” IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 182–195, 2008. [CrossRef]
  10. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hedge, H. Nyikal, C.-K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006. [CrossRef]
  11. I. White, A. E. Tin, K. Williams, H. B. Wang, A. Wonfor, and R. Penty, “Scalable optical switches for computing applications,” J. Opt. Netw., vol. 8, no. 2, pp. 215–224, 2009. [CrossRef]
  12. B. G. Lee, A. Biberman, D. Po, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 767–769, 2008. [CrossRef]
  13. A. Biberman, G. Hendry, J. Chan, H. Wang, K. Bergman, K. Preston, N. Sherwood-Droz, J. S. Levy, and M. Lipson, “CMOS-compatible scalable photonic switch architecture using 3D-integrated deposited silicon materials for high-performance data center networks,” in Proc. Optical Fiber Communications Conf., Mar. 2011.
  14. N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, 1999. [CrossRef]
  15. C. Minkenberg, I. Iliadis, and F. Abel, “Low-latency pipelined crossbar arbitration,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2004, vol. 2, pp. 1174–1179.
  16. R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, and R. Grzybowski, “Viable opto-electronic HPC interconnect fabrics,” in Proc. of the ACM/IEEE Supercomputing Conf., 2005.
  17. K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K. Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. Stunkel, and P. Walker, “On the feasibility of optical circuit switching for high performance computing systems,” in Proc. of the ACM/IEEE Supercomputing Conf. 2005.
  18. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1246–1260, 2008. [CrossRef]
  19. C. Minkenberg, “Performance of i-SLIP scheduling with large round-trip latency,” in Workshop on High Performance Switching and Routing (HPSR), 2003.
  20. P. Gupta and N. McKeown, “Designing and implementing a fast crossbar scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, 1999. [CrossRef]
  21. X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low power arrayed CMOS silicon photonic transceivers for an 80 Gb/s WDM optical link,” in Proc. Optical Fiber Communications (OFC) Conf., Mar. 2011.
  22. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, 2003. [CrossRef] [PubMed]
  23. Y. Kuwana, S. Takenobu, K. Takayama, S. Yokotsuka, and S. Kodama, “Low loss and highly reliable polymer optical waveguides with perfluorinated dopant-free core,” in Optical Fiber Communication Conf. (OFC), Mar. 2006.
  24. A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE, vol. 97, no. 7, pp. 1216–1238, 2009. [CrossRef]
  25. J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally, and M. Horowitz, “A 14 mW 6.25-Gb/s transceiver in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2745–2757, 2007. [CrossRef]
  26. B. G. Lee, B. A. Small, Q. F. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett., vol. 19, no. 5, pp. 456–458, 2007. [CrossRef]
  27. W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical compensation in high-index-contrast waveguides,” in 5th IEEE Int. Conf. on Group IV Photonics, 2008.
  28. J. E. Cunningham, I. Shubin, X. Zheng, G. Li, H. Thacker, Y. Luo, J. Yao, K. Raj, B. Guenin, T. Pinguet, and A. V. Krishnamoorthy, “Compact, thermally-tuned resonant ring muxes in CMOS with integrated backside pyramidal etch pit,” in Proc. Optical Fiber Communication Conf. (OFC), 2011.
  29. M. R. Reshotko, B. A. Block, B. Jin, and P. Chang, “Waveguide coupled Ge-on-oxide photodetectors for integrated optical links,” in 5th IEEE Int. Conf. on Group IV Photonics, 2008, pp. 182–184.
  30. A. Wonfor, H. Wang, R. Penty, and I. White, “Large port count high-speed optical switch fabric for use within datacenters [Invited],” J. Opt. Commun. Netw., vol. 3, no. 8, pp. A32–A39, Aug.2011. [CrossRef]
  31. R. S. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 245–260, 2011. [CrossRef]
  32. O. Liboiron-Ladouceur, B. A. Small, and K. Bergman, “Physical layer scalability of WDM optical packet interconnection networks,” J. Lightwave Technol., vol. 24, no. 1, pp. 262–270, 2006. [CrossRef]
  33. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express, vol. 16, no. 20, pp. 15915–15922, 2008. [CrossRef] [PubMed]
  34. T. W. Y. Chen and R. Katz, “Energy efficient Ethernet encodings,” in 33rd IEEE Conf. on Local Computer Networks (LCN), Oct. 2008, pp. 122–129.
  35. Y. Audzevich, P. M. Watts, S. Kilmurray, and A. W. Moore, “Efficient photonic coding: A considered revision,” in GreenNets 2011 (SIGCOM workshop), Aug. 2011.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited