Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of Fiber-Bragg Grating-Induced Group-Delay Ripple in High-Speed Transmission Systems

Not Accessible

Your library or personal account may give you access

Abstract

The implementation of a chirped fiber-Bragg grating (FBG) for dispersion compensation in high-speed (up to 120 Gbit/s) transmission systems with differential and coherent detection is, for the first time, experimentally investigated. For systems with differential detection, we examine the influence of group-delay ripple (GDR) in 40 GBd 2-, 4-, and 8-ary differential phase shift keying (DPSK) systems. Furthermore, we conduct a nonlinear-tolerance comparison between the systems implementing dispersion-compensating fibers and FBG modules, using a 5×80 Gbit/s 100-GHz-spaced wavelength division multiplexing 4-ary DPSK signal. The results show that the FBG-based system provides a 2 dB higher optimal launch power, which leads to more than 3 dB optical signal-to-noise ratio (OSNR) improvement at the receiver. For systems with coherent detection, we evaluate the influence of GDR in a 112 Gbit/s dual-polarization quadrature phase shift keying system with respect to signal wavelength. In addition, we demonstrate that, at the optimal launch power, the 112 Gbit/s systems implementing FBG modules and that using electronic dispersion compensation provide similar performance after 840 km transmission despite the fact that the FBG-based system delivers lower OSNR at the receiver. Lastly, we quantify the GDR mitigation capability of a digital linear equalizer in the 112 Gbit/s coherent systems with respect to the equalizer tap number (Ntap). The results indicate that at least Ntap=9 is required to confine Q-factor variation within 1 dB.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Group-delay ripple correction in chirped fiber Bragg gratings

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich
Opt. Lett. 28(10) 777-779 (2003)

Demonstration of 10  Gbit/s Burst-Mode Transmission Using a Linear Burst-Mode Receiver and Burst-Mode Electronic Equalization [Invited]

Stefano Porto, Cleitus Antony, Anil Jain, Denis Kelly, Daniel Carey, Giuseppe Talli, Peter Ossieur, and Paul D. Townsend
J. Opt. Commun. Netw. 7(1) A118-A125 (2015)

Transmission of a 127 Gb/s PM-QPSK Signal Over a 3350 km SMF-Only Line With Chromatic Dispersion Compensation Using Real-Time DSP [Invited]

Manabu Arikawa, Takeshi Okamoto, Mitsunori Muraki, Daisaku Ogasahara, Emmanuel Le Taillandier de Gabory, Toshiharu Ito, and Kiyoshi Fukuchi
J. Opt. Commun. Netw. 4(11) B161-B167 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved