OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 9 — Sep. 1, 2012
  • pp: A59–A68

Energy Efficiency of Optical Transceivers in Fiber Access Networks [Invited]

Ka-Lun Lee, Behnam Sedighi, Rodney S. Tucker, Hungkei (Keith) Chow, and Peter Vetter  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 9, pp. A59-A68 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dramatic growth of Internet traffic is leading to a concern about the future power consumption of the Internet. Energy sustainability of communication networks is becoming a very important goal for the reduction of the global carbon footprint. As optical access networks gain more popularity, their share in the energy consumption of the data network will increase. Developing energy-efficient technologies for optical access networks is therefore crucial for the continuous scaling of the Internet. In this paper, we model the power consumption of different transceivers and demonstrate how various electronic and photonic technologies can help improve energy efficiency. We discuss the impact of different light sources and driver circuits on the transceiver power efficiency. We also show how energy efficiency is related to network topology.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Enabling Optical Devices for Scalable Networks

Original Manuscript: April 19, 2012
Revised Manuscript: July 7, 2012
Manuscript Accepted: July 7, 2012
Published: August 7, 2012

Ka-Lun Lee, Behnam Sedighi, Rodney S. Tucker, Hungkei (Keith) Chow, and Peter Vetter, "Energy Efficiency of Optical Transceivers in Fiber Access Networks [Invited]," J. Opt. Commun. Netw. 4, A59-A68 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, June2011. [CrossRef]
  2. K. Hooghe and M. Guenach, “Toward green copper broadband access networks,” IEEE Commun. Mag., vol. 49, no. 8, pp. 87–93, Aug.2011. [CrossRef]
  3. CISCO Systems, Entering the Zettabyte Era, white paper, June2011.
  4. IEEE Std 802.3av-2009: Physical layer specifications and management parameters for 10 Gb/s passive optical networks.
  5. ITU-T recommendation G.987: 10-Gigabit-capable passive optical network (XG-PON) systems.
  6. D. C. Kilper, G. Atkinson, S. K. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar./Apr.2011. [CrossRef]
  7. R. S. Tucker, “Green optical communications-part II: energy limitations in networks,” IEEE J. Sel. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar./Apr.2011. [CrossRef]
  8. S. Aleksic, “Energy efficiency of electronic and optical network elements,” IEEE J. Sel. Quantum Electron., vol. 17, no. 2, pp. 296–308, Mar./Apr.2011. [CrossRef]
  9. W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, and P. Demeester, “Power consumption in telecommunication in telecommunication networks: overview and reduction strategies,” IEEE Commun. Mag., vol. 49, no. 6, pp. 62–69, June2011. [CrossRef]
  10. E. Trojer and P. Eriksson, “Power saving modes for GPON and VDSL,” in Proc. 13th European Conf. on Networks Optical Communication, Austria, June 2008.
  11. B. Skubic, “Evaluation of ONU power saving modes for gigabit-capable passive optical networks,” IEEE Network, vol. 25, no. 2, pp. 20–24, Mar./Apr.2011. [CrossRef]
  12. S. Wong, L. Valcarenghi, S. Yen, D. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: advantages and drawbacks,” in IEEE Globcom Workshops 2009, Stanford, CA, Nov. 2009, pp. 1–6.
  13. S. H. Lee, A. Wonfor, R. V. Penty, I. H. White, G. Busico, R. Cush, and M. Wale, “Athermal colourless C-band optical transmitter for passive optical networks,” in Proc. of European Conf. and Exhibition on Optical Communication (ECOC), Italy, Sept. 2010.
  14. C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. V. Jahnes, Y. H. Kwark, C. W. Baks, D. M. Kuchta, and J. A. Kash, “A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single holey CMOS IC,” J. Lightwave Technol., vol. 29, no. 4, pp. 542–553, Feb.2011. [CrossRef]
  15. S. M. Mitani, M. S. Alias, M. F. Maulud, M. R. Yahya, and A. F. A. Ma, “Design and fabrication of power-efficient VCSEL-based optical transceiver,” in Int. Conf. on Advanced Technologies for Communications, Hanoi, Vietnam, Oct. 2008, pp. 117–119.
  16. Y. Zuo, F. E. Kiamiley, X. Wang, P. Gui, J. Ekman, X. Wang, M. J. McFadden, and M. W. Haney, “Power-efficient dual-rate optical transceiver,” Appl. Opt., vol. 44, no. 33, pp. 7112–7124, Nov.2005. [CrossRef] [PubMed]
  17. M. Ichino, S. Yoshikawa, H. Oomori, Y. Maeda, N. Nishiyama, T. Takayama, T. Mizue, I. Tounai, and M. Nishie, “Small form factor pluggable optical transceiver module with extremely low power consumption for dense wavelength division multiplexing applications,” in Proc. of the 55th Electronic Components and Technology Conf., May 2005, pp. 1044–1048.
  18. D. A. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, July2009. [CrossRef]
  19. R. S. Tucker, “Green optical communications-part I: energy limitations in transport,” IEEE J. Sel. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar./Apr.2011. [CrossRef]
  20. M. Urano, T. Kawamura, S. Ohteru, H. Suto, K. Kawai, R. Kusaba, N. Miura, J. Kato, A. Miyazaki, T. Hatano, S. Yasuda, N. Tanaka, S. Shigematsu, M. Nakanishi, and T. Shibata, “The 10G-EPON OLT and ONU LSIs for the coexistence of 10G-EPON and GE-PON toward the next FTTH era,” in Symp. on VLSI Circuits, Kyoto, Japan, June 2011, 13-1.
  21. RTXM166-501, Wuhan Telecommunication Devices Co., Ltd. [Online]. Available: http://www.wtd.com.cn/en/UploadFile/RTXM166-501.pdf.
  22. RTXM182-802, Wuhan Telecommunication Devices Co., Ltd. [Online]. Available: http://www.wtd.com.cn/en/UploadFile/RTXM182-801&RTXM182-802.pdf.
  23. E. Sackinger, Y. Ota, T. J. Gabara, and W. C. Fischer, “15 mW, 155 Mb/s CMOS burst-mode laser driver with automatic power control and end-of-life detection,” IEEE. J. Solid-State Circuits, vol. 34, no. 12, pp. 386–387, 1999. [CrossRef]
  24. C.-F. Liao and S.-L. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar.2008. [CrossRef]
  25. T. Takemoto, F. Yuki, H. Yamashita, S. Tsuji, T. Saito, and S. Nishimura, “A 25 Gb/s × 4-channel 74 mW/ch transimpedance amplifier in 65 nm CMOS,” in IEEE Custom Integrated Circuits Conf. (CICC), 2010.
  26. C. Knochenhauer, S. Hauptmann, C. J. Scheytt, and F. Ellinger, “A jitter optimized differential 40 Gbit/s transimpedance amplifier in SiGe BiCMOS,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 10, pp. 2538–2548, Oct.2010. [CrossRef]
  27. C. Knochenhauer, B. Sedighi, and F. Ellinger, “40 Gbit/s transimpedance amplifier with high linearity range in 0.13 µm SiGe BiCMOS,” Electron. Lett., vol. 47, no. 10, pp. 605–606, May2011. [CrossRef]
  28. C.-Y. Wang, C.-S. Wang, and C.-K. Wang, “An 18-mW two-stage CMOS transimpedance amplifier for 10 Gb/s optical application,” in IEEE Asian Solid-State Circuit Conf., Nov. 2007, pp. 412–415.
  29. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 235–248, Jan.2010. [CrossRef]
  30. LC-TOSAxTFD053G, Eoptolink [Online]. Available: http://www.eoptolink.com/spec/LC-TOSAxTFD053G.pdf.
  31. RTXM167-407, Wuhan Telecommunication Devices Co., Ltd. [Online]. Available: http://www.wtd.com.cn/en/UploadFile/RTXM167-407.pdf.
  32. EOLS-GT-25_V1.e_GPON_OLT_SFP_CLASS_B+, Eoptolink [Online]. Available: http://www.eoptolink.com/spec/EOLS-GT-25_V1.e_GPON_OLT_SFP_CLASS_B+.pdf.
  33. RC22xxx1-T, Raycan [Online]. Available: http://raycan.com/image/pdf/RC22xxx1-T.pdf.
  34. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 291–293, Feb.2008. [CrossRef]
  35. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag., vol. 48, no. 10, pp. 184–191, Oct.2010. [CrossRef]
  36. E. Kapon and A. Sirbu, “Long wavelength VCSELs: power-efficient answer,” Nat. Photonics, vol. 3, pp. 27–29, Jan.2009. [CrossRef]
  37. A. Gatto, A. Boletti, P. Boffi, C. Neumeyr, M. Ortsiefer, E. Rönneberg, and M. Martinell, “1.3-µm VCSEL transmission performance up to 12.5 Gb/s for metro access networks,” IEEE Photon. Technol. Lett., vol. 221, no. 12, pp. 778–780, June2009. [CrossRef]
  38. M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Quantum Electron., vol. 17, no. 5, pp. 1158–1166, Sept./Oct.2011. [CrossRef]
  39. A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Quantum Electron., vol. 17, no. 2, pp. 357–376, Mar./Apr.2011. [CrossRef]
  40. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, and A. V. Krishnamoorthy, “High-efficiency 25 Gb/s CMOS ring modulator with integrated thermal tuning,” in IEEE Group IV Photonics 2011, London, UK, Sept. 2011, WA2.
  41. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Yong, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. on Lasers and Electro-Optics (CLEO), San Jose, CA, May 2010, CThJ3.
  42. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proc. of IEEE Photonics in Switching, Cambridge, UK, Aug. 2007, TuB3.3.
  43. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett., vol. 33, no. 19, pp. 2185–2187, Oct.2008. [CrossRef] [PubMed]
  44. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express, vol. 17, no. 17, pp. 14627–14663, Aug.2009. [CrossRef]
  45. B. Sedighi, K.-L. Lee, R. S. Tucker, H. Chow, and P. Vetter, “Energy efficiency in future 40-Gb/s fiber access networks,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Mar. 2012, JTh2A.59.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited