OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 1 — Jan. 1, 2013
  • pp: 56–67

Building a Low-Energy Transparent Optical Wide Area Network With “Multipaths”

Davide Cuda, Raluca-Maria Indre, Esther Le Rouzic, and James Roberts  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 1, pp. 56-67 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an all-optical networking solution for a wide area network built on shared multipoint-to-multipoint lightpaths that, for short, we call “multipaths.” A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted medium access control protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like optical packet switching and optical burst switching. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based Internet service provider network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay.

© 2013 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Research Papers

Original Manuscript: July 30, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: November 6, 2012
Published: December 17, 2012

Davide Cuda, Raluca-Maria Indre, Esther Le Rouzic, and James Roberts, "Building a Low-Energy Transparent Optical Wide Area Network With “Multipaths”," J. Opt. Commun. Netw. 5, 56-67 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yoo, “Energy efficiency in the future Internet: The role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 406–418, Mar.–Apr.2011. [CrossRef]
  2. “SMART 2020: Enabling the low carbon economy in the information age,” Report of Global e-Sustainability Initiative, 2008.
  3. D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011. [CrossRef]
  4. E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.
  5. P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011. [CrossRef]
  6. R. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar.–Apr.2011. [CrossRef]
  7. D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.
  8. V. Chan, “Optical flow switching networks,” Proc. IEEE, vol. 100, no. 5, pp. 1079–1090, May2012. [CrossRef]
  9. P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.
  10. I. Chlamtac and A. Gumaste, “Light-trails: A solution to IP centric communication in the optical domain,” Lect. Notes Comput. Sci., vol. 2601, pp. 634–644, 2003.
  11. N. Bouabdallah, “Sub-wavelength solutions for next-generation optical networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 36–43, Aug.2007. [CrossRef]
  12. I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003. [CrossRef]
  13. I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009. [CrossRef]
  14. P. Robert and J. Roberts, “A flow-aware MAC protocol for a passive optical metropolitan area network,” in Proc. of ITC 23, 2011 [Online]. Available: http://arxiv.org/abs/1102.3538v1.
  15. J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007. [CrossRef]
  16. A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008. [CrossRef]
  17. “Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” ITU-T Recommendation G.984.3, 2008.
  18. “LAN/MAN CSMA/CDE (Ethernet) Access Method, Section 5,” IEEE Standard, 2008.
  19. C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.
  20. M. Sek, A. Bononi, L. A. Rusch, and M. Menif, “Gain stabilization in gain clamped EDFA cascades fed by WDM burst-mode packet traffic,” J. Lightwave Technol., vol. 18, no. 3, p. 308, Mar.2000. [CrossRef]
  21. C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997. [CrossRef]
  22. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, 2004.
  23. W. Vereecken and B. Lannoo, “Final report: Collection of data about energy consumption in network elements and subsystems,” TREND Deliverable FP7-ICT-257740/ D1.3, June2012.
  24. A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.
  25. SUN-GE8100 Optical Line Terminal, Product Data Sheet [Online]. Available: http://suntelecommunication.cn/products/EPON.asp.
  26. Alcatel-Lucent 1675 LambdaUnite Multi Service Switch, Product Data Sheet 2009 [Online]. Available: http://www.alcatel-lucent.com.
  27. W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012. [CrossRef]
  28. W. Hou, L. Gua, and X. Wei, “Robust and integrated grooming for power and port cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011. [CrossRef]
  29. P. Winzer, G. Raybo, H. Song, A. Ademiecki, S. Corteselli, A. Gnauck, D. Fishman, C. Doerr, S. Chandrasekar, L. Buhl, T. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK transmission: From laboratory experiments to field trials,” J. Lightwave Technol., vol. 26, no. 20, pp. 3388–3402, Oct.2008. [CrossRef]
  30. “Spectral grids for WDM applications: DWDM frequency grid,” ITU Recommendation G.694.1, 2002 [Online]. Available: http://www.itu.int/rec/T-REC-G.694.1-200206-I/en.
  31. S. Oueslati and J. Roberts, “A new direction for quality of service: Flow aware networking,” in Proc of NGI, 2005.
  32. M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453. [CrossRef]
  33. A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.
  34. T. Bonald, “Insensitive traffic models for communication networks,” Discrete Event Dyn. Syst., vol. 17, no. 3, pp. 405–421, Sept.2007, [Online]. Available: http://dx.doi.org/10.1007/s10626-007-0012-5. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited