OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 10 — Oct. 1, 2013
  • pp: A204–A212

Colorless FDMA-PON With Flexible Bandwidth Allocation and Colorless, Low-Speed ONUs [Invited]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, and J. Leuthold  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 10, pp. A204-A212 (2013)
http://dx.doi.org/10.1364/JOCN.5.00A204


View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a remotely seeded flexible passive optical network (PON) with multiple low-speed subscribers but only a single optical line terminal transceiver operating at a data rate of 31.25Gbits/s. The scheme is based on a colorless frequency division multiplexing (FDM)-PON with centralized wavelength control. Multiplexing and demultiplexing in the optical network unit (ONU) is performed in the electronic domain and relies either on FDM with Nyquist sinc-pulse shaping or on orthogonal frequency division multiplexing (OFDM). This way the ONU can perform processing at low speed in the baseband. Further, the ONU is colorless by means of a remote seed for upstream transmission and a remote local oscillator for heterodyne reception, all of which helps in keeping maintenance and costs for an ONU potentially low and will simplify wavelength allocation in a future software defined network architecture. To extend the reach, semiconductor optical amplifiers are used for optical amplification in the downstream and upstream.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4252) Fiber optics and optical communications : Networks, broadcast

ToC Category:
OFC/NFOEC 2013

History
Original Manuscript: May 28, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 26, 2013
Published: September 25, 2013

Citation
P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, and J. Leuthold, "Colorless FDMA-PON With Flexible Bandwidth Allocation and Colorless, Low-Speed ONUs [Invited]," J. Opt. Commun. Netw. 5, A204-A212 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-10-A204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol.  24, pp. 4568–4583, 2006. [CrossRef]
  2. N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.
  3. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S. W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007. [CrossRef]
  4. H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.
  5. C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012. [CrossRef]
  6. T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express, vol.  20, pp. 17386–17392, 2012. [CrossRef]
  7. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, pp. 67–74, 2007. [CrossRef]
  8. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol.  22, no. 11, pp. 2582–2591, Nov. 2004. [CrossRef]
  9. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express, vol.  16, pp. 841–859, 2008. [CrossRef]
  10. R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011. [CrossRef]
  11. R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012. [CrossRef]
  12. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol., vol.  29, no. 1, pp. 53–61, Jan. 2011. [CrossRef]
  13. Z. Dong, J. Yu, H.-C. Chien, N. Chi, L. Chen, and G.-K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express, vol.  19, pp. 11100–11105, 2011. [CrossRef]
  14. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012. [CrossRef]
  15. R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.
  16. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012. [CrossRef]
  17. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express, vol.  18, pp. 2137–2143, 2010. [CrossRef]
  18. N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011. [CrossRef]
  19. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009. [CrossRef]
  20. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010. [CrossRef]
  21. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010. [CrossRef]
  22. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.
  23. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.
  24. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010. [CrossRef]
  25. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10 Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, pp. 21089–21100, 2012. [CrossRef]
  26. C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011. [CrossRef]
  27. W. Ji and Z. Kang, “Design of WDM RoF PON based on OFDM and optical heterodyne,” J. Opt. Commun. Netw., vol.  5, pp. 652–657, 2013. [CrossRef]
  28. B. Liu, X. Xin, L. Zhang, and J. Yu, “Performance investigation and demonstration of colorless upstream transmission in ECDM-OFDM-PON,” Opt. Express, vol.  19, pp. 14542–14548, 2011.
  29. C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express, vol.  20, pp. 6230–6235, 2012. [CrossRef]
  30. L. Zhang, X. Xin, B. Liu, J. Yu, and Q. Zhang, “A novel ECDM-OFDM-PON architecture for next-generation optical access network,” Opt. Express, vol.  18, pp. 18347–18353, 2010. [CrossRef]
  31. I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.
  32. Z. Cao, F. Li, C. M. Okonkwo, H. P. Van den Boom, E. Tangdiongga, Q. Tang, J. Tang, J. Yu, L. Chen, and A. M. J. Koonen, “A synchronized signaling insertion and detection scheme for reconfigurable optical OFDM access networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3972–3979, Dec. 2012. [CrossRef]
  33. X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25 Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express, vol.  19, pp. 20557–20570, 2011. [CrossRef]
  34. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010. [CrossRef]
  35. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011. [CrossRef]
  36. Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), GPON Standards G.984 Series.
  37. I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013. [CrossRef]
  38. Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), .
  39. B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010. [CrossRef]
  40. B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben-Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw., vol.  4, no. 9, pp. A29–A37, Sept. 2012. [CrossRef]
  41. R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited