OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 10 — Oct. 1, 2013
  • pp: A213–A219

Regenerator Predeployment in CN-ROADM Networks With Shared Mesh Restoration [Invited]

Inwoong Kim, Paparao Palacharla, Xi Wang, Qiong Zhang, Daniel Bihon, Mark D. Feuer, and Sheryl L. Woodward  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 10, pp. A213-A219 (2013)
http://dx.doi.org/10.1364/JOCN.5.00A213


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the resource requirements and capacity of a continental-scale backbone network supporting shared mesh restoration (SMR) and service velocity (a rapid provisioning method). Network simulations of wavelength routing by colorless, nondirectional reconfigurable optical add/drop multiplexers (CN-ROADMs) show that performance depends on the routing scheme (minimum distance or minimum regenerator) and on whether or not regeneration is limited to a selected subset of sites. Comparing SMR with dedicated protection, we find that up to 27% fewer regenerators are required for the shared mesh case, while capacity is increased by approximately 40%. Regenerator site concentration and minimum-regenerator routing provide the best results.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4261) Fiber optics and optical communications : Networks, protection and restoration

ToC Category:
OFC/NFOEC 2013

History
Original Manuscript: May 1, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: September 5, 2013
Published: September 25, 2013

Citation
Inwoong Kim, Paparao Palacharla, Xi Wang, Qiong Zhang, Daniel Bihon, Mark D. Feuer, and Sheryl L. Woodward, "Regenerator Predeployment in CN-ROADM Networks With Shared Mesh Restoration [Invited]," J. Opt. Commun. Netw. 5, A213-A219 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-10-A213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMS and their system applications,” in Optical Fiber Telecommunications VB, I. P. Kaminow, T. Li, and A. Willner, Eds. New York: Academic, 2008, Chap. 8.
  2. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
  3. A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. W. Gannett, J. Jackel, G. Kim, J. Klincewicz, T. Kwon, G. Li, P. Magill, J. M. Simmons, R. A. Skoog, J. Strand, A. Lehmen, B. J. Wilson, S. L. Woodward, and D. Xu, “Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks,” J. Opt. Commun. Netw., vol.  4, no. 1, pp. 1–14, Jan. 2012. [CrossRef]
  4. S. Woodward, M. Feuer, P. Palacharla, X. Wang, I. Kim, and D. Bihon, “Intra-node contention in a dynamic colorless, non-directional ROADM,” in Proc. OFC/NFOEC, Mar. 2010, paper PDPC8.
  5. M. Feuer, S. Woodward, P. Palacharla, X. Wang, I. Kim, and D. Bihon, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011. [CrossRef]
  6. P. Palacharla, X. Wang, I. Kim, D. Bihon, M. D. Feuer, and S. L. Woodward, “Blocking performance in dynamic optical networks based on colorless, non-directional ROADMs,” in Proc. OFC/NFOEC, Mar. 2011, paper JWA8.
  7. S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, Feb. 2012. [CrossRef]
  8. M. D. Feuer, S. L. Woodward, I. Kim, P. Palacharla, X. Wang, D. Bihon, B. G. Bathula, W. Zhang, R. Sinha, G. Li, and A. L. Chiu, “Simulations of a service velocity network employing regenerator site concentration,” in Proc. OFC/NFOEC, Mar. 2012, paper NTu2J.5.
  9. I. Kim, P. Palacharla, X. Wang, Q. Zhang, D. Bihon, S. Woodward, and M. Feuer, “Shared mesh restoration in ROADM based service velocity network,” in Proc. OFC/NFOEC, Mar. 2013, paper NW4I.3.
  10. B. G. Bathula, R. Sinha, A. Chiu, M. D. Feuer, G. Li, S. Woodward, W. Zhang, K. Bergman, I. Kim, and P. Palacharla, “On concentrating regenerator sites in ROADM networks,” in Proc. OFC/NFOEC, Mar. 2012, paper NW3F.6.
  11. C. V. Saradhi, R. Fedrizzi, A. Zanardi, E. Salvadori, G. M. Galimberti, A. Tanzi, G. Marinelli, and O. Gerstel, “Regenerator sites selection based on multiple paths considering impairments and protection requirements,” in European Conf. on Networks and Optical Communications (NOC), July 2011, paper CPI-1.
  12. The DARPA CORONET Topology for the Contiguous United States (CONUS) [Online]. Available: http://monarchna.com/topology.html .
  13. D. Mazzarese, “Minimizing latency in long-haul networks,” Lightwave Magazine, vol.  28, no. 5, pp. 11–16, Sept. 2011 [Online]. Available: http://www.lightwaveonline.com/articles/print/volume-28/issue-5/applications/strategies-for-reducing-latency-in-optical-networks.html .
  14. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express, vol.  16, no. 2, pp. 880–888, Jan. 2008. [CrossRef]
  15. K. A. Tse, “AT&Ts photonic backbone design options,” in Proc. OFC/NFOEC, Mar. 2010, paper NThF3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited