OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 11 — Nov. 1, 2013
  • pp: 1275–1284

On the Optimal Design of a Spectrum-Switched Optical Network With Multiple Modulation Formats and Rates

Ion Popescu, Isabella Cerutti, Nicola Sambo, and Piero Castoldi  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 11, pp. 1275-1284 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectrum-switched optical networks (SSONs) are an attractive solution for core networks. With respect to wavelength-switched optical networks (WSONs), they achieve a higher spectrum efficiency thanks to the use of a flexible grid, instead of a fixed one. In SSONs, the well-known wavelength assignment (WA) problem of WSONs becomes a spectrum assignment (SA) problem. The SA problem aims at assigning a portion of the spectrum (called a frequency slot) to lightpaths. The width of the frequency slot depends on the requested bit rate and the modulation format adopted for the lightpath, and it is a multiple of the minimum bandwidth granularity, referred to as frequency slice. Thus, differently from WA, which assigns a single wavelength (or color) to each lightpath, SA assigns a set of colors (i.e., a set of frequency slices) to the lightpath. The shift from WA to SA introduces an additional constraint, which is related to the spectral adjacency of such frequency slices. This paper proves that the adjacency constraint in SA is not required and that by solving the WA problem (or the coloring problem) it is possible to derive a solution with spectrally adjacent slices in polynomial time. Based on such results, an integer linear programming formulation (ILP) for the optimal SA in a SSON with multi modulation formats and multi line rates (MMF/MLR) is presented for minimizing the network cost. The total cost of the network comprises the spectrum cost and the transponder card cost. Optimal results are presented for a MMF/MLR-SSON ring and show the amount of total occupied bandwidth and the network costs for different loads and ring lengths. Optimal selection of the modulation format and line rate is driven by the slice cost and the transponder card cost. Result comparison indicates that support of MMF and MLR is especially effective for improving spectrum utilization and allows spectrum saving up to 20% with respect to an SSON ring with single modulation format and line rate.

© 2013 Optical Society of America

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4256) Fiber optics and optical communications : Networks, network optimization
(060.4264) Fiber optics and optical communications : Networks, wavelength assignment

ToC Category:
Research Papers

Original Manuscript: February 6, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: September 4, 2013
Published: October 31, 2013

Ion Popescu, Isabella Cerutti, Nicola Sambo, and Piero Castoldi, "On the Optimal Design of a Spectrum-Switched Optical Network With Multiple Modulation Formats and Rates," J. Opt. Commun. Netw. 5, 1275-1284 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010. [CrossRef]
  2. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Elastic bandwidth allocation in flexible OFDM-based optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1354–1366, 2011. [CrossRef]
  3. F. Cugini, G. Meloni, F. Paolucci, N. Sambo, M. Secondini, L. Gerardi, L. Pot, and P. Castoldi, “Demonstration of flexible optical network based on path computation element,” J. Lightwave Technol., vol.  30, no. 5, pp. 727–733, Mar. 2012. [CrossRef]
  4. D. Geisler, R. Proietti, Y. Yin, R. Scott, X. Cai, N. Fontaine, L. Paraschis, O. Gerstel, and S. Yoo, “The first testbed demonstration of a flexible bandwidth network with a real-time adaptive control plane,” in Proc. of ECOC, Sept. 2011, pp. 1–3.
  5. N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag., vol.  50, no. 5, pp. 66–72, May 2012. [CrossRef]
  6. R. Casellas, R. Munoz, J. M. Fabrega, M. S. Moreolo, R. Martinez, L. Liu, T. Tsuritani, and I. Morita, “Design and experimental validation of a GMPLS/PCE control plane for elastic CO-OFDM optical networks,” IEEE J. Sel. Areas Commun., vol.  31, no. 1, pp. 49–61, Jan. 2013. [CrossRef]
  7. “Draft revised g.694.1 version 1.3,” Unpublished ITU-T Study Group 15, Question 6.
  8. A. Patel, P. Ji, J. Jue, and T. Wang, “Routing, wavelength assignment, and spectrum allocation algorithms in transparent flexible optical WDM networks,” Opt. Switching Networking, vol.  9, no. 3, pp. 191–204, 2012. [CrossRef]
  9. L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the routing and spectrum allocation problem for flexgrid optical networks,” Photonic Network Commun., vol.  24, no. 3, pp. 177–186, 2012. [CrossRef]
  10. M. Klinkowski and K. Walkowiak, “Routing and spectrum assignment in spectrum sliced elastic optical path network,” IEEE Commun. Lett., vol.  15, no. 8, pp. 884–886, 2011. [CrossRef]
  11. Y. Wang, X. Cao, Q. Hu, and Y. Pan, “Towards elastic and fine-granular bandwidth allocation in spectrum-sliced optical networks,” J. Opt. Commun. Netw., vol.  4, no. 11, pp. 906–917, 2012. [CrossRef]
  12. A. Eira, J. Pedro, and J. Pires, “Cost-optimized dimensioning of translucent WDM networks with mixed-line-rate spectrum-flexible channels,” in 13th IEEE Int. Conf. on High Performance Switching and Routing (HPSR), 2012, pp. 185–190.
  13. O. Pedrola, A. Castro, L. Velasco, M. Ruiz, J. Fernández-Palacios, and D. Careglio, “CAPEX study for a multilayer IP/MPLS-over-flexgrid optical network,” J. Opt. Commun. Netw., vol.  4, no. 8, pp. 639–650, 2012. [CrossRef]
  14. C. Rottondi, M. Tornatore, A. Pattavina, and G. Gavioli, “Routing, modulation level, and spectrum assignment in optical metro ring networks using elastic transceivers,” J. Opt. Commun. Netw., vol.  5, no. 4, pp. 305–315, 2013. [CrossRef]
  15. P. Ghobril, C. Zaiter, and E. Le Rouzic, “Rearrangement: From wavelength routed to sliced-spectrum optical networks,” in Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.
  16. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol.  28, no. 4, pp. 466–475, 2010. [CrossRef]
  17. P. Hansen, M. Labbé, and D. Schindl, “Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results,” Discrete Optim., vol.  6, no. 2, pp. 135–147, 2009. [CrossRef]
  18. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo, “The maximum clique problem,” in Handbook of Combinatorial Optimization, vol. 4. Kluwer Academic, 1999, pp. 1–74.
  19. P. Coll, J. Marenco, I. M. Diaz, and P. Zabala, “Facets of the graph coloring polytope,” Ann. Operat. Res., vol.  116, no. 1, pp. 79–90, 2002. [CrossRef]
  20. H. Zang, J. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol.  1, no. 1, pp. 47–60, 2000.
  21. M. Grötschel, L. Lovász, and A. Schrijver, “Relaxations of vertex packing,” J. Comb. Theory, Ser. B, vol.  40, no. 3, pp. 330–343, 1986. [CrossRef]
  22. M. Grotschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimizations. Springer-Verlag, 1993.
  23. E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol., vol.  17, no. 5, pp. 377–386, 2011. [CrossRef]
  24. A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM superchannels for adaptive networks,” IEEE Photon. Technol. Lett., vol.  23, no. 20, pp. 1526–1528, 2011. [CrossRef]
  25. B. T. Teipen, H. Griesser, and M. H. Eiselt, “Flexible bandwidth and bit-rate programmability in future optical networks,” in Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.
  26. Y.-K. Huang, E. Ip, T. Xia, G. Wellbrock, M.-F. Huang, Y. Aono, T. Tajima, and M. Cvijetic, “Mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3560 km of field-installed fiber with filterless coherent receiver,” J. Lightwave Technol., vol.  30, no. 4, pp. 609–617, 2012. [CrossRef]
  27. F. Cugini, F. Paolucci, N. Sambo, L. Poti, A. D’Errico, and G. Bottari, “Reliable flexible-ROADM architecture enabling modulation format adaptation,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.
  28. “AMPL: A modeling language for mathematical programming,” Dec. 2012 [Online]. Available: http://www.ampl.com/ .
  29. “IBM ILOG CPLEX: High-performance mathematical programming engine,” Dec. 2012 [Online]. Available: http://www.ibm.com/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited