OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 4 — Apr. 1, 2013
  • pp: 316–328

Secure Optical Networks Based on Quantum Key Distribution and Weakly Trusted Repeaters

David Elkouss, Jesus Martinez-Mateo, Alex Ciurana, and Vicente Martin  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 4, pp. 316-328 (2013)
http://dx.doi.org/10.1364/JOCN.5.000316


View Full Text Article

Enhanced HTML    Acrobat PDF (683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we explore how recent technologies can improve the security of optical networks. In particular, we study how to use quantum key distribution (QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secret-key distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKD devices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g., single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e., repeaters) are used. Both quantum-regime and trusted, classical repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred to as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components. Moreover, the theoretical framework allows one to extend these scenarios not only to accommodate more complex trust constraints, but also to consider robustness and resiliency constraints on the network.

© 2013 Optical Society of America

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4785) Fiber optics and optical communications : Optical security and encryption
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Research Papers

History
Original Manuscript: June 20, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: January 25, 2013
Published: March 26, 2013

Citation
David Elkouss, Jesus Martinez-Mateo, Alex Ciurana, and Vicente Martin, "Secure Optical Networks Based on Quantum Key Distribution and Weakly Trusted Repeaters," J. Opt. Commun. Netw. 5, 316-328 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-4-316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Senior and Y. Jamro, Optical Fiber Communications: Principles and Practice. Financial Times/Prentice Hall, 2008.
  2. K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection prevention,” in IEEE Military Communications Conf. (MILCOM), 2004, vol. 2, pp. 711–716.
  3. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Secur., vol.  6, no. 3, pp. 725–736, 2011. [CrossRef]
  4. D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JWA83.
  5. L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron., vol.  5, no. 4, pp. 133–143, 2011. [CrossRef]
  6. D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland, “The magic words are squeamish ossifrage,” in Proc. of the 4th Int. Conf. on the Theory and Applications of Cryptology: Advances in Cryptology, 1995, pp. 263–277.
  7. B. Kaliski, TWIRL and RSA Key Size, RSA Laboratories, 2006 [Online]. Available: http://www.rsa.com/rsalabs/node.asp?id=2004 .
  8. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management—part 1: General (revised),” in NIST Special Publication, 2006.
  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., vol.  74, no. 1, pp. 145–195, 2002. [CrossRef]
  10. D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys., vol.  13, no. 12, 123001, 2011. [CrossRef]
  11. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express, vol.  20, no. 13, pp. 14030–14041, 2012. [CrossRef]
  12. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol.  299, no. 5886, pp. 802–803, 1982. [CrossRef]
  13. P. D. Townsend, S. J. D. Phoenix, K. J. Blow, and S. M. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett., vol.  30, no. 22, pp. 1875–1877, 1994. [CrossRef]
  14. P. Toliver, R. J. Runser, T. E. Chapuran, J. L. Jackel, T. C. Banwell, M. S. Goodman, R. J. Hughes, C. G. Peterson, D. Derkacs, J. E. Nordholt, L. Mercer, S. McNown, A. Goldman, and J. Blake, “Experimental investigation of quantum key distribution through transparent optical switch elements,” IEEE Photon. Technol. Lett., vol.  15, no. 11, pp. 1669–1671, 2003. [CrossRef]
  15. D. Lancho, J. Martínez, D. Elkouss, M. Soto, and V. Martín, “QKD in standard optical telecommunications networks,” in 1st Int. Conf. on Quantum Communication and Quantum Networking, 2010, vol. 36, pp. 142–149.
  16. W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron., vol.  15, no. 6, pp. 1591–1601, 2009. [CrossRef]
  17. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys., vol.  11, no. 10, 105001, 2009. [CrossRef]
  18. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys., vol.  12, no. 10, 103042, 2010. [CrossRef]
  19. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol., vol.  29, no. 21, pp. 3210–3222, 2011. [CrossRef]
  20. S. Wang, W. Chen, J. Guo, Z. Yin, H. Li, Z. Zhou, G. Guo, and Z. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett., vol.  37, no. 6, pp. 1008–1010, 2012. [CrossRef]
  21. C. Elliot, “Building the quantum network,” New J. Phys., vol.  4, no. 1, 46, 2002.
  22. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys., vol.  11, no. 7, 075001, 2009. [CrossRef]
  23. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. Dynes, A. Dixon, A. Sharpe, Z. Yuan, A. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express, vol.  19, no. 11, pp. 10387–10409, 2011. [CrossRef]
  24. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett., vol.  81, no. 26, pp. 5932–5935, 1998. [CrossRef]
  25. R. Alléaume, F. Roueff, E. Diamanti, and N. Lütkenhaus, “Topological optimization of quantum key distribution networks,” New J. Phys., vol.  11, no. 7, 075002, 2009. [CrossRef]
  26. National Institute of Standards and Technology, “Security requirements for cryptographic modules,” FIPS PUB 140-2, 2001.
  27. Common Criteria [Online]. Available: http://www.commoncriteriaportal.org .
  28. R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol.  46, no. 4, pp. 1204–1216, 2000. [CrossRef]
  29. N. Cai and T. Chan, “Theory of secure network coding,” Proc. IEEE, vol.  99, no. 3, pp. 421–437, 2011. [CrossRef]
  30. E. D. Manley, J. S. Deogun, L. Xu, and D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska, Lincoln, NE, Tech. Rep., 2008.
  31. A. E. Kamal, A. Ramamoorthy, L. Long, and L. Shizheng, “Overlay protection against link failures using network coding,” IEEE/ACM Trans. Netw., vol.  19, no. 4, pp. 1071–1084, 2011. [CrossRef]
  32. E. D. Manley, J. S. Deogun, L. Xu, and D. R. Alexander, “All-optical network coding,” J. Opt. Commun. Netw., vol.  2, no. 4, pp. 175–191, 2010. [CrossRef]
  33. M. Belzner, and H. Haunstein, “Network coding in passive optical networks,” in 35th European Conf. on Optical Communication (ECOC), 2009, pp. 1–2.
  34. K. Miller, T. Biermann, H. Woesner, and H. Karl, “Network coding in passive optical networks,” in IEEE Int. Symp. on Network Coding (NetCod), 2010, pp. 1–6.
  35. K. Fouli, M. Maier, and M. Medard, “Network coding in next-generation passive optical networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 38–46, 2011. [CrossRef]
  36. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley-Interscience, 1991.
  37. T. Chan and A. Grant, “Capacity bounds for secure network coding,” in Proc. Communications Theory Workshop, 2008, pp. 94–100.
  38. D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message transmission,” J. ACM, vol.  40, no. 1, pp. 17–47, 1993. [CrossRef]
  39. S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and M. Effros, “Resilient network coding in the presence of Byzantine adversaries,” IEEE Trans. Inf. Theory, vol.  54, no. 6, pp. 2596–2603, 2008. [CrossRef]
  40. L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, and T. Länger, “Security of trusted repeater quantum key distribution networks,” J. Comput. Secur., vol.  18, no. 1, pp. 61–87, 2010.
  41. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett., vol.  84, no. 19, p. 3762, 2004. [CrossRef]
  42. ID Quantique SA [Online]. Available: http://www.idquantique.com .
  43. X. Ma, H.-K. Lo, Y. Zhao, and B. Qi, “Practical decoy state for quantum key distribution,” Phys. Rev. A, vol.  72, no. 1, 012326, 2005. [CrossRef]
  44. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of continuous-variable quantum key distribution over 80 km of standard telecom fiber,” presented at the 2nd Annu. Conf. on Quantum Cryptography (QCRYPT), 2012.
  45. A. Ruiz-Alba, J. Mora, W. Amava, A. Martínez, V. García-Muñoz, D. Calvo, and J. Capmany, “Microwave photonics parallel quantum key distribution,” IEEE Photon. J., vol.  4, no. 3, pp. 931–942, 2012. [CrossRef]
  46. L. Masanes, S. Pironio, and A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun., vol.  2, 238, 2011. [CrossRef]
  47. R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective. Burlington, MA: Morgan Kaufmann Publishers Inc., 2009.
  48. I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 10  Gb/s WDM-PON,” Opt. Express, vol.  18, no. 9, pp. 9600–9612, 2010. [CrossRef]
  49. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys., vol.  12, no. 6, 063027, 2010. [CrossRef]
  50. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol.  22, no. 11, pp. 2582–2591, 2004. [CrossRef]
  51. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys., vol.  11, no. 7, 075003, 2009. [CrossRef]
  52. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett., vol.  89, no. 3, 037902, 2002. [CrossRef]
  53. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1  Mbit/s secure key rate,” Opt. Express, vol.  16, no. 23, pp. 18790–18979, 2008. [CrossRef]
  54. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2 GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express, vol.  19, no. 11, pp. 10632–10639, 2011. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited