OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 4 — Apr. 1, 2013
  • pp: 370–377

On the Optimum Detection Threshold for Minimum Bit Error Rate due to Four-Wave Mixing in a WDM System

Santu Sarkar and N. R. Das  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 4, pp. 370-377 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, optimum detection threshold for minimum bit error rate (BER) due to four-wave mixing is calculated taking the probability distribution of power depletion as binomial and considering nonuniform channel spacing. Nondegenerate four-wave mixing has been assumed for the worst-case analysis. The effects of the number of interfering channels, receiver noise, and input power on the BER in the presence of four-wave mixing are studied. The optimum detection threshold for minimum BER is studied as a function of the number of channels. This optimum threshold significantly deviates from the conventional threshold in the Gaussian distribution approximation as the channel number increases beyond three.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Research Papers

Original Manuscript: September 26, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 10, 2013
Published: March 29, 2013

Santu Sarkar and N. R. Das, "On the Optimum Detection Threshold for Minimum Bit Error Rate due to Four-Wave Mixing in a WDM System," J. Opt. Commun. Netw. 5, 370-377 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. S. Murthy and M. Gurusamy, WDM Optical Networks. Upper Saddle River, NJ: Pearson Education, 2004.
  2. B. Mukherjee, “WDM optical communication networks: Progress and challenges,” IEEE J. Sel. Areas Commun., vol.  18, pp. 1810–1824, 2000. [CrossRef]
  3. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “WDM systems with unequally spaced channels,” J. Lightwave Technol., vol.  13, pp. 889–897, 1995. [CrossRef]
  4. N. R. Das and S. Sarkar, “Probability of power depletion due to SRS cross-talk and optimum detection threshold in a WDM receiver,” IEEE J. Quantum Electron., vol.  47, pp. 424–430, 2011. [CrossRef]
  5. Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol., vol.  29, pp. 3275–3281, 2011. [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics. New York: Academic, 1995.
  7. X. Xu, Y. Yao, X. Zhao, and D. Chen, “Multiple four-wave-mixing processes and their application to multiwavelength erbium-doped fiber lasers,” J. Lightwave Technol., vol.  27, pp. 2876–2885, 2009. [CrossRef]
  8. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys., vol.  49, pp. 5098–5106, 1978. [CrossRef]
  9. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett., vol.  27, pp. 1675–1677, 2002. [CrossRef]
  10. K. Inoue, “Tunable and selective wavelength conversion using fibre four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett., vol.  6, pp. 1451–1453, 1994. [CrossRef]
  11. J. Liang and K. Iwashita, “FWM compensation in DPSK transmission by reducing detectors with digital coherent detection using backward propagation,” Int. J. Inf. Electron. Eng., vol.  1, pp. 99–104, 2011.
  12. K. K. Y. Wong, G. W. Lu, and L. K. Chen, “Experimental studies of the WDM signal crosstalk in two-pump fiber optical parametric amplifiers,” Opt. Commun., vol.  270, pp. 429–432, 2007. [CrossRef]
  13. I. Neokosmidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “New techniques for the suppression of the four-wave mixing-induced distortion in nonzero dispersion fiber WDM systems,” J. Lightwave Technol., vol.  23, pp. 1137–1144, 2005. [CrossRef]
  14. J. Wang and J. M. Kahn, “Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection,” J. Lightwave Technol., vol.  22, pp. 362–371, 2004. [CrossRef]
  15. Q. Lin and G. P. Agrawal, “Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion,” Opt. Lett., vol.  29, pp. 1114–1116, 2004. [CrossRef]
  16. K. Washio, K. Inove, and S. Kishida, “Efficient large-frequency-shifted three-wave mixing in low dispersion wavelength region in single-mode optical fiber,” Electron. Lett., vol.  16, pp. 650–660, 1980. [CrossRef]
  17. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev., vol.  126, pp. 1977–1979, 1962. [CrossRef]
  18. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol., vol.  13, pp. 841–849, 1995. [CrossRef]
  19. A. Papoulis, Probability, Random Variable, and Stochastic Processes. New York: McGraw-Hill, 1984.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited