OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 5 — May. 1, 2013
  • pp: 437–446

Bit Error Rate Analysis of Rectangular QAM/FSO Systems Using an APD Receiver Over Atmospheric Turbulence Channels

Bach T. Vu, Ngoc T. Dang, Truong C. Thang, and Anh T. Pham  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 5, pp. 437-446 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically analyze the performance of free-space optical (FSO) systems using rectangular quadrature-amplitude modulation (QAM) and an avalanche photodiode (APD) receiver over atmospheric turbulence channels. Both log-normal and gamma–gamma channel models are used in the analysis for the cases of weak/moderate and strong atmospheric turbulence. The system bit error rate, when Gray code mapping is employed, is theoretically derived taking into account various link conditions and system parameters, including the APD shot noise, thermal noise, channel attenuation and geometrical loss, atmospheric turbulence strengths, and link distances. The numerical results show that using APD with a proper selection of the average gain could greatly benefit the performance of the system; as a matter of fact, in the case of optimal gain, the system using an APD receiver could provide 7 dB gain in comparison with the one with a positive-instrinsic-negative receiver. We also quantitatively discuss the impact of link conditions and system parameters on the selection of optimal APD gain.

© 2013 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4080) Fiber optics and optical communications : Modulation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Research Papers

Original Manuscript: October 9, 2012
Revised Manuscript: February 18, 2013
Manuscript Accepted: March 8, 2013
Published: April 15, 2013

Bach T. Vu, Ngoc T. Dang, Truong C. Thang, and Anh T. Pham, "Bit Error Rate Analysis of Rectangular QAM/FSO Systems Using an APD Receiver Over Atmospheric Turbulence Channels," J. Opt. Commun. Netw. 5, 437-446 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Majumdar, and J. C. Ricklin, Free-Space Laser Communications: Principles and Advances. Springer, 2007.
  2. D. O’Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems,” J. Opt. Netw., vol.  4, no. 6, pp. 312–322, June 2005. [CrossRef]
  3. S. Karp, Optical Channels: Fibers, Clouds, Water, and the Atmosphere. Plenum, 1988.
  4. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun., vol.  53, no. 9, pp. 1455–1461, Sept. 2005. [CrossRef]
  5. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun., vol.  59, no. 5, pp. 1368–1377, May 2011. [CrossRef]
  6. Q. Lu, Q. Liu, and G. S. Mitchell, “Performance analysis for optical wireless communication systems using subcarrier PSK intensity modulation through turbulent atmospheric channel,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2004, vol. 3, pp. 1872–1875.
  7. Q. Liu and Q. Lu, “Subcarrier PSK intensity modulation for optical wireless communications through turbulent atmospheric channel,” in IEEE Int. Conf. Communications (ICC), 2005, vol. 3, pp. 1761–1765.
  8. A. T. Pham, T. C. Thang, S. Guo, and Z. Cheng, “Performance bounds for turbo-coded SC-PSK/FSO communications over strong turbulence channels,” in Int. Conf. Advanced Technologies for Communications (ATC), 2011, pp. 161–164.
  9. K. P. Peppas and C. K. Datsikas, “Average symbol error probability of general-order rectangular quadrature amplitude modulation of optical wireless communication systems over atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  2, no. 2, pp. 102–110, Feb. 2010. [CrossRef]
  10. M. Z. Hassan, X. Song, and J. Cheng, “Subcarrier intensity modulated wireless optical communications with rectangular QAM,” J. Opt. Commun. Netw., vol.  4, no. 6, pp. 522–532, June 2012. [CrossRef]
  11. N. Cvijetic, S. G. Wilson, and M. Brandt-Pearce, “Receiver optimization in turbulent free-space optical MIMO channels with APDs and Q-ary PPM,” IEEE Photon. Technol. Lett., vol.  19, no. 2, pp. 103–105, Jan. 2007. [CrossRef]
  12. N. Cvijetic, S. G. Wilson, and M. Brandt-Pearce, “Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence,” IEEE J. Sel. Areas Commun., vol.  26, no. 3, pp. 3–12, Apr. 2008. [CrossRef]
  13. M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng., vol.  47, no. 2, 025008, 2008. [CrossRef]
  14. G. P. Agrawal, Fiber-Optic Communication Systems. New York: Wiley-Interscience, 2002.
  15. J. W. Strohbehn, Laser Beam Propagations in the Atmosphere. Springer, 1978.
  16. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, no. 8, pp. 1554–1562, 2001. [CrossRef]
  17. K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun., vol.  50, no. 7, pp. 1074–1080, July 2002. [CrossRef]
  18. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, no. 11, pp. 3415–3424, 2009. [CrossRef]
  19. I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products. New York: Academic, 2000.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited