OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 6 — Jun. 1, 2013
  • pp: 554–564

Error Rate Performance Comparison of Coherent and Subcarrier Intensity Modulated Optical Wireless Communications

Mingbo Niu, Julian Cheng, and Jonathan F. Holzman  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 6, pp. 554-564 (2013)
http://dx.doi.org/10.1364/JOCN.5.000554


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A detailed analysis and comparison is carried out for optical wireless communications (OWCs) with coherent and subcarrier-intensity-modulation-based systems, which are the two major implementations for detection-threshold-free operation without irreducible error floors. Error rate performance is studied for communications with binary phase-shift keying, differential phase-shift keying, and noncoherent frequency-shift keying over weak-to-strong (gamma–gamma distributed) turbulence conditions. Series-form error rate expressions are also derived for diversity reception schemes, including maximum ratio combining, equal gain combining, and selection combining. Based on our analysis, it is found that coherent OWC systems typically outperform subcarrier intensity modulation systems, with 24–30 dB improvements in sensitivity, mainly due to their elimination of thermal and background noise effects. The performance improvements of coherent systems are confirmed through numerical studies. The findings can offer significant benefits for future OWC systems that are subject to transmitted power limitations.

© 2013 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Research Papers

History
Original Manuscript: January 7, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 5, 2013
Published: May 9, 2013

Citation
Mingbo Niu, Julian Cheng, and Jonathan F. Holzman, "Error Rate Performance Comparison of Coherent and Subcarrier Intensity Modulated Optical Wireless Communications," J. Opt. Commun. Netw. 5, 554-564 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-6-554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol.  24, pp. 4750–4762, Dec. 2006. [CrossRef]
  2. Q. Liu, C. Qiao, G. Mitchell, and S. Stanton, “Optical wireless communication networks for first- and last-mile broadband access,” J. Opt. Netw., vol.  4, pp. 807–828, Dec. 2005. [CrossRef]
  3. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis, IN:Sams, 2002.
  4. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007. [CrossRef]
  5. W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.
  6. W. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol.  27, pp. 967–973, Apr. 2009. [CrossRef]
  7. W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008. [CrossRef]
  8. X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012. [CrossRef]
  9. K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006. [CrossRef]
  10. T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008. [CrossRef]
  11. A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express, vol.  16, pp. 14151–14162, Sept. 2008. [CrossRef]
  12. M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011. [CrossRef]
  13. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010. [CrossRef]
  14. M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.
  15. M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011. [CrossRef]
  16. R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006. [CrossRef]
  17. N. Cvijetic, D. Qian, J. Yu, Y.-K. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol., vol.  28, pp. 1218–1227, Oct. 2010. [CrossRef]
  18. N. Perlot, “Turbulence-induced fading probability in coherent optical communication through the atmosphere,” Appl. Opt., vol.  46, pp. 7218–7226, Oct. 2007. [CrossRef]
  19. E. J. Lee and V. W. S. Chan, “Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference,” J. Opt. Commun. Netw., vol.  1, pp. 463–483, Oct. 2009. [CrossRef]
  20. G. P. Agrawal, Fiber-Optical Communication Systems, 3rd ed.New York: Wiley, 2002.
  21. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001. [CrossRef]
  22. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999. [CrossRef]
  23. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.
  24. M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005. [CrossRef]
  25. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009. [CrossRef]
  26. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.San Diego: Academic, 2000.
  27. J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011. [CrossRef]
  28. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.
  29. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free space optical links with pointing errors,” J. Lightwave Technol., vol.  25, pp. 1702–1710, July 2007. [CrossRef]
  30. M. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Doublelaser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol.  3, pp. 145–154, Feb. 2011. [CrossRef]
  31. J. M. Hunt, F. Holmes, and F. Amzajerdian, “Optimum local oscillator levels for coherent detection using photoconductors,” Appl. Opt., vol.  27, pp. 3135–3141, Aug. 1988. [CrossRef]
  32. S. Yamazaki, “A 2  Gb/s optical CPFSK heterodyne detection transmission experiment using newly developed MQW-DFB laser diodes,” in Proc. 14th European Conf. Optical Communication (ECOC’88), Brighton, Sept. 11–15, 1988, pp. 467–470.
  33. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited