OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 6 — Jun. 1, 2013
  • pp: 574–583

Cyclic-Linked Flexibility: An Architectural Approach for Reconfigurable Optical WDM-TDM Access Networks

Nguyen-Cac Tran, Chigo Okonkwo, Eduward Tangdiongga, Hyun-Do Jung, and Ton Koonen  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 6, pp. 574-583 (2013)
http://dx.doi.org/10.1364/JOCN.5.000574


View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Next-generation optical access networks should not only increase capacity but also be able to redistribute capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is an instrument that can enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONUs). In this paper, we propose a novel concept, named cyclic-linked flexibility, to address the cost-prohibitive problem. By using cyclic-linked flexibility, the ONU needs to switch only within a subset of two preplanned wavelengths, but the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. A basic rearrangement algorithm is developed to demonstrate that cyclic-linked flexibility performs close to a fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, we show that the rearrangement process has minimum impact on in-service ONUs. To realize cyclic-linked flexibility, a physical implementation is proposed with a feasible cost and wavelength-agnostic ONU design.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: September 4, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: April 18, 2013
Published: May 14, 2013

Citation
Nguyen-Cac Tran, Chigo Okonkwo, Eduward Tangdiongga, Hyun-Do Jung, and Ton Koonen, "Cyclic-Linked Flexibility: An Architectural Approach for Reconfigurable Optical WDM-TDM Access Networks," J. Opt. Commun. Netw. 5, 574-583 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-6-574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Cisco Visual Networking Index: Forecast and Methodology, 2010–2015,” Cisco White Paper, June 2011 [Online]. Available: http://www.cisco.com .
  2. “Cisco Visual Networking Index: Usage Study,” Cisco White Paper, Oct. 2010 [Online]. Available: http://www.cisco.com .
  3. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011–2016,” Cisco White Paper, Feb. 2012 [Online]. Available: http://www.cisco.com .
  4. T. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” Proc. IEEE, vol.  94, no. 5, pp. 911–934, 2006. [CrossRef]
  5. N. C. Tran, E. Tangdiongga, C. M. Okonkwo, H. D. Jung, and A. M. J. Koonen, “Flexibility level adjustment in reconfigurable WDM-TDM optical access networks,” J. Lightwave Technol., vol.  30, no. 15, pp. 2542–2550, Aug. 2012. [CrossRef]
  6. F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. G. Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, Nov. 2004. [CrossRef]
  7. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol., vol.  24, pp. 2827–2834, July 2006. [CrossRef]
  8. P. Ossieur, C. Antony, A. Naughton, A. M. Clarke, H.-G. Krimmel, X. Yin, X.-Z. Qiu, C. Ford, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, S. Smolorz, H. Rohde, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a 32×512 split, 100 km reach, 2×32×10  Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs,” J. Lightwave Technol., vol.  29, no. 24, pp. 3705–3718, Dec. 2011. [CrossRef]
  9. R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.
  10. N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.
  11. R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.
  12. G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.
  13. N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.
  14. P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “High-bit-rate dynamically reconfigurable WDM–TDM access network,” J. Opt. Commun. Netw., vol.  1, no. 2, pp. A143–A158, July 2009. [CrossRef]
  15. M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009. [CrossRef]
  16. D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.
  17. J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.
  18. “88-channel 50 GHz AWG datasheet,” Enablence Technologies Inc., 2010 [Online]. Available: http://www.enablence.com .
  19. “10-gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification,” ITU-T Recommendation G.987.3, Oct. 2010.
  20. “Requirements for European next-generation optical access networks,” European FP7 project OASE, Sept. 2010 [Online]. Available: http://www.ict-oase.eu .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited