OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 9 — Sep. 1, 2013
  • pp: 1010–1020

Optimization Scheme for WDM-Based Transmission Technology Selection in Future Passive Optical Networks

Marilet De Andrade, Massimo Tornatore, and Achille Pattavina  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 9, pp. 1010-1020 (2013)
http://dx.doi.org/10.1364/JOCN.5.001010


View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Future passive optical networks (PONs) are expected to support much larger capacity and much wider coverage. How to jointly address these two design requirements represents one of the most challenging aspects in today’s research on PONs. So far, most research efforts have been devoted to devising new architectural or technological solutions to support such stringent requirements. In particular, the technology to be used for transmission may have diverse multiplexing techniques, types of transceivers, modulation formats, and detection techniques. However, the question of which transmission technology is the most effective considering the trade-offs in terms of complexity, offered capacity, and reach is still open. In this paper, we aim at answering this question comparing the use of time division multiplexing (TDM), wavelength division multiplexing (WDM), and hybrid TDM/WDM techniques in PONs. To achieve this goal, we first categorize the main options for transmission technologies in PONs in three families: colored dense WDM (DWDM), tunable DWDM, and colorless DWDM. Then, we propose a new optimization scheme that selects the optimal transmission technology for different operational scenarios that are defined by varying the number of users, the distance to the users, and the traffic load. The choice of the passive optical components to be used at the remote node is also part of the optimization scheme given its significant impact on the choice of the transmission technology. As a result, we report and discuss which transmission technologies are the most suitable under different operational scenarios.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4256) Fiber optics and optical communications : Networks, network optimization
(060.4264) Fiber optics and optical communications : Networks, wavelength assignment

ToC Category:
Research Papers

History
Original Manuscript: March 29, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 2, 2013
Published: August 16, 2013

Citation
Marilet De Andrade, Massimo Tornatore, and Achille Pattavina, "Optimization Scheme for WDM-Based Transmission Technology Selection in Future Passive Optical Networks," J. Opt. Commun. Netw. 5, 1010-1020 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-9-1010


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Optical Seamless Access Evolution (OASE) European Project, “Requirements for European next-generation optical access networks,” , June 2011 [Online]. Available: http://www.ict-oase.eu/index.php?page=148& .
  2. G. Talli and P. D. Townsend, “Feasibility demonstrator of 100 km reach DWDM super PON with upstream bit rates of 2.5  Gb/s and 10  Gb/s,” in Proc. OFC/NFOEC, Anaheim, Mar. 2005.
  3. D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, Sept. 2007.
  4. R. P. Davey, P. Healey, I. Hope, P. Watkinson, and D. B. Payne, “DWDM reach extension of a GPON to 135 km,” in Proc. OFC/NFOEC, Anaheim, Mar. 2005.
  5. H.-T. Lin, Z.-H. Ho, H.-C. Cheng, and W.-R. Chang, “SPON: A slotted long-reach PON architecture for supporting Internet working capability,” in Proc. Military Communications Conf. (MILCOM 2009), Boston, Oct. 2009, pp. 18–21.
  6. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1  Gbit/s for everyone,” in Proc. ECOC, Vienna, Sept. 2009, pp. 20–24.
  7. J. A. Lazaro, J. Prat, P. Chanclou, G. M. T. Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Proc. OFC/NFOEC, San Diego, Feb. 2008.
  8. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol., vol.  24, no. 7, pp. 2827–2834, 2006. [CrossRef]
  9. D. P. Shea and J. E. Mitchell, “Experimental upstream demonstration of a long reach wavelength-converting PON with DWDM backhaul,” in Proc. OFC/NFOEC, Anaheim, Mar. 2006, paper OWL.
  10. S. Smolorz, H. Rohde, P. Ossieur, C. Antony, P. D. Townsend, T. De Ridder, B. Baekelandt, X. Z. Qiu, S. Appathurai, H. G. Krimmel, D. Smith, and A. Poustie, “Next generation access networks: PIEMAN and beyond,” in Int. Conf. on Photonics in Switching, Sept. 2009.
  11. F.-T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, Nov. 2004. [CrossRef]
  12. B. Jaumard and R. Chowdhury, “Location and allocation of switching equipment (splitters/AWGs) in a WDM PON network,” in Proc. Int. Conf. on Computer Communications and Networks (ICCCN), Aug. 2011.
  13. O. Kipouridis, C. Mas Machuca, A. Autenrieth, and K. Grobe, “Street-aware infrastructure planning tool for next generation optical access networks,” in Proc. Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, UK, Apr. 2012.
  14. A. Mitcsenkov, G. Paksy, and T. Cinkler, “Geography-and infrastructure-aware topology design methodology for broadband access networks (FTTX),” Photon. Netw. Commun., vol.  21, no. 3 pp. 253–266, 2011. [CrossRef]
  15. M. De Andrade, A. Buttaboni, M. Tornatore, P. Boffi, P. Martelli, A. Pattavina, and G. Gavioli, “Design of long-reach TDM/WDM passive optical access network,” in Proc. Int. Telecommunications Network Strategy and Planning Symp., Rome, Oct. 15–18, 2012.
  16. C. W. Chow and C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for Rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J., vol.  5, no. 2, 7900407, Apr. 2013.
  17. J. Zhang and N. Ansari, “On the capacity of WDM passive optical networks,” IEEE Trans. Commun., vol.  59, no. 2, pp. 552–559, Feb. 2011. [CrossRef]
  18. D. Kong, Y. Li, X. Wu, H. Wang, H. Guo, X. Hong, Y. Zuo, K. Xu, W. Li, J. Wu, and J. Lin, “Novel high-sensitivity coherent transceiver for optical DPSK/DQPSK signals based on heterodyne detection and electrical delay interferometer,” Chin. Opt. Lett., vol.  10, no. 3, 030603, Mar. 2012. [CrossRef]
  19. D. Lavery, R. Maher, D. Millar, B. C. Thomsen, P. Bayvel, and S. Savory, “Demonstration of 10  Gbit/s colorless coherent PON incorporating tunable DS-DBR lasers and low-complexity parallel DSP,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2012, paper PDP5B.10.
  20. E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 67–74, Jan. 2007. [CrossRef]
  21. L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express, vol.  20, pp. 3781–3786, 2012. [CrossRef]
  22. P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallecot, “Demonstration of RSOA-based remote modulation at 2.5 and 5  Gbit/s for WDM PON,” in Proc. OFC/NFOEC, Anaheim, Mar. 2007, paper OWD1.
  23. D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10  Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in Proc. ECOC 2009, Vienna, Austria, Sept. 2009, paper 8.6.3.
  24. S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5 Gbps QPSK signal using directly modulated RSOA for 100 km coherent WDM PON,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper OTuB3.
  25. A. R. Dhaini, C. M. Assi, and A. Shami, “Quality of service in TDM/WDM Ethernet passive optical networks (EPONs),” in Proc. IEEE Symp. on Computers and Communications, Cagliari, June 2006.
  26. J. Zhang and N. Ansari, “Scheduling hybrid WDM/TDM passive optical networks with nonzero laser tuning time,” IEEE/ACM Trans. Netw., vol.  19, no. 4, pp. 1014–1027, Aug. 2011. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited