OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 6, Iss. 3 — Mar. 1, 2014
  • pp: 270–281

Scalable Data Center Network Architecture With Distributed Placement of Optical Switches and Racks

Jie Xiao, Bin Wu, Xiaohong Jiang, Achille Pattavina, Hong Wen, and Lei Zhang  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 3, pp. 270-281 (2014)
http://dx.doi.org/10.1364/JOCN.6.000270


View Full Text Article

Enhanced HTML    Acrobat PDF (2101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cloud services are fundamentally supported by data center networks (DCNs). With the fast growth of cloud services, the scale of DCNs is increasing rapidly, leading to great concern about system scalability due to multiple constraints. This paper proposes a scalable DCN architecture based on optical switching and transmission, with the distributed placement of optical switches and server racks at different nodes in a given optical network. This solves the scalability issue by relaxing power and cooling constraints and by reducing the number of (electronic) switches using high-capacity optical switches, as well as by simplifying DCN internal connections using wavelengths in the optical network. Moreover, the distributed optical switches provide service access interfaces to meet demand within areas, and thus reduce the transmission cost of the external traffic. The major concern is the additional delay and cost for remote transmissions of the DCN internal traffic. To this end, we study the component placement problem in DCNs under a given set of external demands and internal traffic patterns. By leveraging among multiple conflicting factors such as scalability and internal overhead of the DCN as well as the transmission cost of external traffic, we propose both an integer linear program and a heuristic to minimize the system cost of a DCN while satisfying all service demands in the network. This addresses both scalability and cost minimization issues from a network point of view.

© 2014 Optical Society of America

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms
(060.4256) Fiber optics and optical communications : Networks, network optimization
(060.4259) Fiber optics and optical communications : Networks, packet-switched
(060.4265) Fiber optics and optical communications : Networks, wavelength routing

ToC Category:
Research Papers

History
Original Manuscript: August 27, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 20, 2013
Published: February 20, 2014

Citation
Jie Xiao, Bin Wu, Xiaohong Jiang, Achille Pattavina, Hong Wen, and Lei Zhang, "Scalable Data Center Network Architecture With Distributed Placement of Optical Switches and Racks," J. Opt. Commun. Netw. 6, 270-281 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-3-270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and W. Wu, “DAC: Generic and automatic address configuration for data center networks,” IEEE/ACM Trans. Netw., vol.  20, no. 1, pp. 84–99, 2012. [CrossRef]
  2. M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,” IEEE Commun. Surv. Tutorials, vol.  15, no. 2, pp. 909–928, 2013. [CrossRef]
  3. C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag., vol.  48, no. 7, pp. 32–39, July 2010. [CrossRef]
  4. Z. Zheng, T. Zhou, M. Lyu, and I. King, “Component ranking for fault-tolerant cloud applications,” IEEE Trans. Serv. Comput., vol.  5, no. 4, pp. 540–550, 2012.
  5. L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: Towards a cloud definition,” Comput. Commun. Rev., vol.  39, no. 1, pp. 50–55, Jan. 2009. [CrossRef]
  6. P. Wright, T. Harmer, J. Hawkins, and Y. L. Sun, “A commodity-focused multi-cloud marketplace exemplar application,” in 2011 IEEE Int. Conf. on Cloud Computing (CLOUD), 2011, pp. 590–597.
  7. H. J. Chao, Z. Jing, and S. Y. Liew, “Matching algorithms for three-stage bufferless Clos network switches,” IEEE Commun. Mag., vol.  41, no. 10, pp. 46–54, 2003. [CrossRef]
  8. S. Jiang, G. Hu, S. Y. Liew, and H. J. Chao, “Scheduling algorithms for shared fiber-delay-line optical packet switches—Part II: The three-stage Clos-network case,” J. Lightwave Technol., vol.  23, no. 4, pp. 1601–1609, 2005. [CrossRef]
  9. F. Wang and M. Hamdi, “Strictly non-blocking conditions for the central-stage buffered Clos-network,” IEEE Commun. Lett., vol.  12, no. 3, pp. 206–208, 2008. [CrossRef]
  10. X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious routing in fat-tree based system area networks with uncertain traffic demands,” IEEE/ACM Trans. Netw., vol.  17, no. 5, pp. 1439–1452, 2009. [CrossRef]
  11. S. Coll, F. J. Mora, J. Duato, and F. Petrini, “Efficient and scalable hardware-based multicast in fat-tree networks,” IEEE Trans. Parallel Distrib. Syst., vol.  20, no. 9, pp. 1285–1298, 2009.
  12. F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato, “Dynamic fault tolerance in fat trees,” IEEE Trans. Comput., vol.  60, no. 4, pp. 508–525, 2011. [CrossRef]
  13. R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data center network fabric,” Comput. Commun. Rev., vol.  39, no. 4, pp. 39–50, Oct. 2009. [CrossRef]
  14. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable and fault-tolerant network structure for data centers,” Comput. Commun. Rev., vol.  38, no. 4, pp. 75–86, Oct. 2008. [CrossRef]
  15. T. Hoff, “Google architecture,” July2007 [Online]. Available: http://highscalability.com/google-architecture .
  16. J. Snyder, “Microsoft: Datacenter growth defies Moore’s law,” 2007 [Online]. Available: http://www.pcworld.com/article/id,130921/article.html .
  17. U.S. Environmental Protection Agency, “Report to congress on server and data center efficiency (public law 109-431),” ENERGY STAR Program, Aug. 2007.
  18. D. D. Kandlur and T. W. Keller, “Green data centers and hot chips,” in Proc. 46th Annu. Design Automation Conf., 2009, pp. 888–890.
  19. A. Benner, “Optical interconnect opportunities in supercomputers and high end computing,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2012, paper OTu2B.4.
  20. “Vision and roadmap: Routing telecom and data centers toward efficient energy use,” poster presented at Workshop on Routing Telecom and Data Centers, 2009.
  21. Y. Zhang and N. Ansari, “HERO: Hierarchical energy optimization for data center networks,” IEEE Syst. J., to be published.
  22. Y. Zhang and N. Ansari, “On architecture design, congestion notification, TCP incast and power consumption in data centers,” IEEE Commun. Surv. Tutorials, vol.  15, no. 1, pp. 39–64, 2013. [CrossRef]
  23. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM, 2010, pp. 327–338.
  24. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch architecture for modular data centers,” in Proc. ACM SIGCOMM, 2010, pp. 339–350.
  25. X. Ye, Y. Yin, S. J. B. Yoo, P. Mejia, R. Proietti, and V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. 6th ACM/IEEE Symp. on Architectures for Networking and Communications Systems (ANCS), 2010, p. 24.
  26. A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: A topology malleable data center network,” in Proc. Ninth ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets), 2010, p. 8.
  27. K. Xi, Y.-H. Kao, M. Yang, and H. J. Chao, “Petabit optical switch for data center networks,” Tech. Rep., Polytechnic Institute of New York University, 2010.
  28. J. Gripp, J. E. Simsarian, J. D. LeGrange, P. Bernasconi, and D. T. Neilson, “Photonic terabit routers: The IRIS project,” in Optical Fiber Communication Conf., 2010, paper OThP3.
  29. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials, vol.  14, no. 4, pp. 1021–1036, 2012. [CrossRef]
  30. Y. Zhang and N. Ansari, “On mitigating TCP incast in data center networks,” IEEE INFOCOM, Shanghai, 2011, pp. 51–55.
  31. B. Towles and W. J. Dally, “Guaranteed scheduling for switches with configuration overhead,” IEEE/ACM Trans. Netw., vol.  11, no. 5, pp. 835–847, Oct. 2003. [CrossRef]
  32. B. Wu, K. L. Yeung, P.-H. Ho, and X. H. Jiang, “Minimum delay scheduling for performance guaranteed switches with optical fabrics,” J. Lightwave Technol., vol.  27, no. 16, pp. 3453–3465, Aug. 2009. [CrossRef]
  33. B. Wu, K. L. Yeung, M. Hamdi, and X. Li, “Minimizing internal speedup for performance guaranteed switches with optical fabrics,” IEEE/ACM Trans. Netw., vol.  17, no. 2, pp. 632–645, Apr. 2009. [CrossRef]
  34. L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong, I. Morita, H. Guo, J. Wu, R. Martinez, and R. Munoz, “Field trial of an OpenFlow-based unified control plane for multi-layer multi-granularity optical switching networks,” J. Lightwave Technol., vol.  31, no. 4, pp. 506–514, 2013. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited