OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 4 — Apr. 1, 2014
  • pp: 355–361

Performance Comparison for NRZ, RZ, and CSRZ Modulation Formats in RS-DBS Nyquist WDM System

Shuchang Yao, Songnian Fu, Hantao Wang, Ming Tang, P. Shum, and Deming Liu  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 4, pp. 355-361 (2014)
http://dx.doi.org/10.1364/JOCN.6.000355


View Full Text Article

Enhanced HTML    Acrobat PDF (1063 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Non-return-to-zero (NRZ), carrier-suppressed return-to-zero (CSRZ), and 33% return-to-zero (RZ) are the three most commonly used modulation formats in the current fiber-optical communication system. In this paper, we investigate and comprehensively compare their performance using the recently proposed receiver side duobinary shaping Nyquist wavelength division multiplexing (RS-DBS Nyquist WDM) technique, which is believed to be one of the promising candidates in the next high-capacity, high-data-rate, long-distance optical transmission systems with its cost-effective capability. It is found that, in a scenario of 3×112Gbps polarization division multiplexing quadrature phase-shift keying (PDM-QPSK) RS-DBS Nyquist WDM transmission, for back-to-back (B2B) transmission, NRZ can obtain almost the same performance as CSRZ and 33% RZ at the optimum bandwidth of 0.82× symbol rate for optical filters at the transmitter side. However, under narrower bandwidth optical filtering, CSRZ and 33% RZ signals have advantages over NRZ signal for requiring 0.5 and 1 dB less optical signal-to-noise ratio at BER=1×103 with a 0.6× symbol rate bandwidth optical filter. Moreover, using the optimum optical filter, after a 1600 km single-mode fiber (SMF) transmission, the CSRZ and 33% RZ signals can achieve 0.55 and 0.7 dB Q factor improvements over NRZ signals, by taking fiber nonlinearity into account. The RZ format is more ideal for the RS-DBS Nyquist WDM system with long-haul SMF transmissions.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4080) Fiber optics and optical communications : Modulation
(120.2440) Instrumentation, measurement, and metrology : Filters

ToC Category:
Research Papers

History
Original Manuscript: September 27, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: January 30, 2014
Published: March 4, 2014

Citation
Shuchang Yao, Songnian Fu, Hantao Wang, Ming Tang, P. Shum, and Deming Liu, "Performance Comparison for NRZ, RZ, and CSRZ Modulation Formats in RS-DBS Nyquist WDM System," J. Opt. Commun. Netw. 6, 355-361 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-4-355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ennser and K. Petermann, “Performance of RZ versus NRZ-transmission on standard single-mode fibers,” IEEE Photon. Technol. Lett., vol.  8, no. 3, pp. 443–445, Mar. 1996. [CrossRef]
  2. B. Bakhshi, M. Vaa, E. A. Golovchenko, W. W. Patterson, R. L. Maybach, and N. S. Bergano, “Comparison of CRZ, RZ and NRZ modulation formats in a 65 × 12.3 Gb/s WDM transmission experiment over 9000 km,” in Proc. OFC, 2001, paper WF4.
  3. P. Winzer, H. Kogelnik, C. H. Kim, H. Kim, R. M. Jopson, and L. E. Nelson, “Effect of receiver design on PMD outage for RZ and NRZ,” in Proc. OFC, 2002, paper TuI1.
  4. H. S. Lin and P. C. Lai, “Single Mach-Zehnder modulator with RZ-DPSK modulation signal in 48 Chs × 40 Gbit/s long haul DWDM transmission,” J. Opt. Commun., vol.  34, no. 3, pp. 155–160, 2013. [CrossRef]
  5. J. X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. J. Lucero, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96 × 100 Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,” J. Lightwave Technol., vol.  29, no. 4, pp. 491–498, 2011. [CrossRef]
  6. W. Jia, Y. Matsui, D. Mahgerefteh, I. Lyubomirsky, and C. K. Chan, “Generation and transmission of 10-Gbaud optical 3/4-RZ-DQPSK signals using a chirp-managed DBR laser,” J. Lightwave Technol., vol.  30, no. 21, pp. 3299–3305, 2012. [CrossRef]
  7. X. Zhou, L. E. Nelson, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450 Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol., vol.  30, no. 4, pp. 553–559, Feb. 2012. [CrossRef]
  8. C. R. S. Fludger, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol., vol.  26, no. 1, pp. 64–72, 2008. [CrossRef]
  9. H. Takahashi, A. A. Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8 × 65.1 Gb/s coherent PDM-OFDM,” J. Lightwave Technol., vol.  28, no. 4, pp. 406–414, Feb. 2010. [CrossRef]
  10. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol., vol.  30, no. 11, pp. 1664–1676, 2012. [CrossRef]
  11. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient terabit superchannels by receiver-side duobinary shaping,” Opt. Express, vol.  20, no. 9, pp. 10271–10282, 2012. [CrossRef]
  12. J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol., vol.  31, no. 4, pp. 515–522, 2013. [CrossRef]
  13. J. Zhang, B. Huang, and X. Li, “Improved quadrature duobinary system performance using multi-modulus equalization,” IEEE Photon. Technol. Lett, vol.  25, no. 16, pp. 1630–1633, 2013. [CrossRef]
  14. J. Yu, J. Zhang, Z. Dong, Z. Jia, H. Chien, Y. Cai, X. Xiao, and X. Li, “Transmission of 8 × 480 Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000 km SMF-28 and twenty-five 100 GHz-grid ROADMs,” Opt. Express, vol.  21, no. 13, pp. 15686–15691 (2013). [CrossRef]
  15. J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol., vol.  31, no. 7, pp. 1073–1078, 2013. [CrossRef]
  16. J. Li, M. Karlsson, P. A. Andrekson, and K. Xu, “Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel,” Opt. Express, vol.  20, no. 26, pp. B223–B231, 2012. [CrossRef]
  17. M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10–40 Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett., vol.  11, no. 8, pp. 991–993, 1999. [CrossRef]
  18. F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Proc. OFC, 2010, paper OThR1.
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol.  20, no. 20, pp. 1733–1735, 2008. [CrossRef]
  20. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” presented at the European Conf. Optical Communication, Vienna, Austria, Sept. 2009, paper P3.08.
  21. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol.  29, no. 4, pp. 543–551, July 1983. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited