OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard Barry
  • Vol. 1, Iss. 7 — Jul. 11, 2002
  • pp: 221–236

Experimental demonstration of the compressed optical packet multiplexing scheme

Akira Hasegawa, Hiroyuki Toda, Makoto Shikata, Yukihiro Ozeki, Tetsuyuki Suzaki, Yoshiyasu Ueno, and Kazuhito Tajima  »View Author Affiliations


Journal of Optical Networking, Vol. 1, Issue 7, pp. 221-236 (2002)


View Full Text Article

Acrobat PDF (533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Packet multiplexing has been proposed as a practical method in optical time-division multiplexing. One reasonable approach is to use a packet compression–expansion scheme at the node to match the transmission rate between the ultrafast backbone optical network and slower (electrical) networks. This scheme is superior to the conventional bit interleave scheme in that it does not require an ultrafast switch at the bit rate; instead, switching at the slower header bit rate and/or packet rate is sufficient. In contrast to the bit interleave, we call this scheme compressed optical packet multiplexing (COPM). Here we present an experimental demonstration of an all-optical COPM with use of a 155-Mbit/s video signal that is optically compressed into a 2.64-Gbit/s optical signal and optically expanded back to the original rate with a reasonable bit error rate.

© 2002 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4250) Fiber optics and optical communications : Networks
(200.4740) Optics in computing : Optical processing

ToC Category:
RESEARCH PAPERS

History
Original Manuscript: May 28, 2002
Revised Manuscript: May 25, 2002
Published: July 11, 2002

Citation
Akira Hasegawa, Hiroyuki Toda, Makoto Shikata, Yukihiro Ozeki, Tetsuyuki Suzaki, Yoshiyasu Ueno, and Kazuhito Tajima, "Experimental demonstration of the compressed optical packet multiplexing scheme," J. Opt. Netw. 1, 221-236 (2002)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-1-7-221


Sort:  Journal  |  Reset

References

  1. M. Nakazawa, “Solitons for breaking barriers to terabit/second WDM and OTDM transmission in the next millennium,” IEEE Sel. Topics Quantum Electron. 6, 1332-1343 (2000).
  2. S. Kawanishi, “High bit rate transmission over 1 Tbit/s,” IEICE Trans. Commun. E84-B, 1135-1141 (2001).
  3. J. Hansryd, B. Bakhshi, B. E. Olsson, P. A. Andrekson, J. Brentel, and E. Kolltveit, “80 Gbit/s single wavelength soliton transmission over 172 km installed fibre,” Electron. Lett. 35, 313-315 (1999).
  4. G. Raybon, B. Mikkelsen, R. J. Essiambre, A. J. Stentz, T. N. Nielsen, D. W. Peckham, L. Hsu, N. L. Gruner, K. Dreyer, and J. E. Johnson, “320 Gbit/s single-channel pseudo-linear transmission over 200 km of nonzero-dispersion fiber,” in Optical Fiber Communication Conference (OFC 2000), Vol. 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 254-256.
  5. U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, “160 Gbit/s transmission over 116 km field-installed fibre using 160Gbit/s OTDM and 40Gbit/s ETDM,” Electron. Lett. 37, 443-445(2001).
  6. A. H. Liang, H. Toda, and A. Hasegawa, “High-speed soliton transmission in dense periodic fibers,” Opt. Lett. 24, 799-801 (1999).
  7. H. Anis, G. Berkey, G. Bordogna, M. Cavallari, B. Charbonnier, A. Evans, I. Hardcastle, M. Jones, G. Pettitt, B. Shaw, V. Srikant, and J. Wakefield, “Continuous dispersion managed fiber for very high speed soliton systems,” presented at the 25th European Conference on Optical Communication (ECOC’99), Nice, France, 26-30 September 1999, Vol. 1, pp. 230-231.
  8. T. Hirooka, T. Nakata, and A. Hasegawa, “Feasibility of densely dispersion managed soliton transmission at 160 Gb/s,” IEEE Photon. Technol. Lett. 12, 633-635 (2000).
  9. M. L. Dennis, J. W. Lou, W. I. Kaechele, T. F. Carruthers, and I. N. Duling, “Dense-dispersion managed transmission of 80-Gb/s time-division-multiplexed data over 1000km,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3-7 September 2000, PDP 1.10.
  10. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-790 (1993).
  11. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746-L1749 (1993).
  12. K. Tajima, S. Nakamura, and Y. Sugimoto, “Ultrafast polarization-discriminating Mach-Zehnder all-optical switch,” Appl. Phys. Lett. 67, 3709-3711 (1995).
  13. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “40-Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer,” Opt. Lett. 21, 1466-1468 (1996).
  14. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photon. Technol. Lett. 10, 346-348 (1998).
  15. T. J. Xia, Y. Liang, K. H. Ahn, J. W. Lou, O. Boyraz, Y.-H. Kao, X. D. Cao, S. Chaikamnerd, J. K. Andersen, and M. N. Islam, “All-optical packet-drop demonstration using 100-Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
  16. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2064-2079 (1998).
  17. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
  18. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425-427 (2000).
  19. Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photon. Technol. Lett. 13, 469-471 (2001).
  20. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gbit/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch,” IEEE Photon. Technol. Lett. 13, 1091-1093 (2001).
  21. P. V. Studenkov, M. R. Gokhale, J. Wei, W. Lin, I. Glesk, and P. R. Prucnal, “Monolithic integration of an all-optical Mach-Zehnder demultiplexer using an asymmetric twin-waveguide structure,” IEEE Photon. Technol. Lett. 13, 600-602 (2001).
  22. S. Nakamura, Y. Ueno, and K. Tajima, “Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper FD3.
  23. R. A. Barry, V. W. S. Chan, K. L. Hall, E. S. Kintzer, J. D. Moores, K. A. Rauschenbach, E. A. Swanson, L. E. Adams, C. R. Doerr, S. G. Finn, H. A. Haus, E. P. Ippen, W. S. Wong, and M. Haner, “All-optical network consortium—ultrafast TDM networks,” IEEE J. Sel. Areas Comm. 14, 999-1013 (1996).
  24. S. W. Seo, K. Bergman, and P. R. Prucnal, “Transparent optical networks with time-division multiplexing,” IEEE J. Sel. Areas Commun. 14, 1039-1051 (1996).
  25. P. Toliver, I. Glesk, R. J. Runser, K. L. Deng, B. Y. Yu, and P. R. Prucnal, “Routing of 100 Gb/s words in a packet-switched optical networking demonstration (POND) node,” J. Lightwave Technol. 16, 2169-2180 (1998).
  26. D. Cotter and A. D. Ellis, “Asynchronous digital optical regeneration and networks,” J. Lightwave Technol. 16, 2068-2080 (1998).
  27. A. Hasegawa and H. Toda, “A feasible all optical soliton based inter-LAN link using time division multiplexing,” IEICE Trans. Commun. E81-B, 1681-1686 (1998).
  28. K.-L. Deng, K. I. Kang, I. Glesk, P. R. Prucnal, and S. Shin, “Optical packet compressor for ultra-fast packet-switched optical networks,” Electron. Lett. 33, 1237-1239 (1997).
  29. H. Toda, F. Nakada, M. Suzuki, and A. Hasegawa, “An optical packet compressor based on a fiber delay loop,” IEEE Photon. Technol. Lett. 12, 708-710 (2000).
  30. P. Toliver, K.-L. Deng, I. Glesk, and P. R. Prucnal, “Simultaneous optical compression and decompression of 100-Gb/s OTDM packets using a single bi-directional optical delay line lattice,” IEEE Photon. Technol. Lett. 11, 1183-1185 (1999).
  31. J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096-1098 (1995).
  32. G. D. Bartolini, D. K. Serkland, P. Kumar, andW. L. Kath, “All-optical storage of a picosecond-pulse packet using parametric amplification,” IEEE Photon. Technol. Lett. 9, 1020-1022 (1997).
  33. Y. Ueno, S. Nakamura, and K. Tajima, “All-optical divided-clock extractor using an ultrafast all-optical symmetric-Mach-Zehnder-type semiconductor switch embedded in an optical loop,” Jpn. J. Appl. Phys. Part 2 39, L803-L805 (2000).
  34. I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, “10-Gb/s asynchronous digital optical regenerator,” IEEE Photon. Tech. Lett. 11, 892-894 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited