OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 8, Iss. 5 — May. 1, 2009
  • pp: 393–403

Effect of traffic patterns on automatic polarization control with polarization and time-division multiplexed optical packet transmission

Vegard L. Tuft, Steinar Bjørnstad, and Dag R. Hjelme  »View Author Affiliations

Journal of Optical Networking, Vol. 8, Issue 5, pp. 393-403 (2009)

View Full Text Article

Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a feedback scheme for automatic polarization control suitable for packet and burst transmission on systems using polarization and time-division-multiplexed traffic. A key feature of the control scheme is to make the packet pattern essentially invisible to the controller enabling the use of standard polarization control modules and control algorithms. The scheme is evaluated experimentally in terms of packet loss ratio (PLR) measurements for different burst lengths and patterns covering the entire range of potential traffic loads. In terms of measured PLR the results show a maximum power penalty of only 0.2 dB compared with continuous light transmission.

© 2009 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Research Papers

Original Manuscript: November 11, 2008
Revised Manuscript: February 28, 2009
Manuscript Accepted: March 6, 2009
Published: April 7, 2009

Vegard L. Tuft, Steinar Bjørnstad, and Dag R. Hjelme, "Effect of traffic patterns on automatic polarization control with polarization and time-division multiplexed optical packet transmission," J. Opt. Netw. 8, 393-403 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24, 4468-4492 (2006). [CrossRef]
  2. A. Chowdhury, J. Yu, and G.-K. Chang, “Same wavelength packet switching in optical label switched networks,” J. Lightwave Technol. 24, 4838-4849 (2006). [CrossRef]
  3. N. Kataoka, N. Wada, K. Sone, Y. Aoki, H. Miyata, H. Onaka, and K. Kitayama, “Field trial of data-granularity-flexible reconfigurable OADM with wavelength-packet-selective switch,” J. Lightwave Technol. 24, 88-94 (2006). [CrossRef]
  4. L. Xu, N. Chi, L. K. Oxenlowe, J. Mork, S. Yu, and P. Jeppesen, “A new orthogonal labeling scheme based on a 40-Gb/s DPSK payload and a 2.5-Gb/s PolSK label,” IEEE Photon. Technol. Lett. 17, 2772-2774 (2005). [CrossRef]
  5. M. Nord, S. Bjornstad, O. Austad, V. L. Tuft, D. R. Hjelme, Aa. S. Sudbo, and L. E. Eriksen, “OpMiGua hybrid circuit- and packet-switched test-bed demonstration and performance,” IEEE Photon. Technol. Lett. 18, 2692-2694 (2006).
  6. S. Lanne and E. Corbel, “Practical considerations for optical polarization-mode dispersion compensation,” J. Lightwave Technol. 22, 1033-1040 (2004). [CrossRef]
  7. C. Xie, D. Werner, and H. F. Haunstein, “Dynamic performance and speed requirement of polarization mode dispersion compensators,” J. Lightwave Technol. 24, 3968-3975 (2006).
  8. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116-1126 (2004). [CrossRef]
  9. S. Bhandare and R. Noé, “Distributed PMD compensator in lithium-niobate-tantalate: performance modeling toward highest bit rates,” J. Lightwave Technol. 25, 2315-2320 (2007). [CrossRef]
  10. X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15, 7407-7414 (2007). [CrossRef]
  11. S.-L. Tsao, H.-T. Lee, and J.-L. Chiu, “Polarization compensation in a WDM/PoISK fiber communication system with a dynamic polarization compensator,” in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics, CLEO/Pacific Rim (IEEE, 2005), pp. 1412-1413.
  12. M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80, 166-176 (1990). [CrossRef]
  13. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172-4183 (2006). [CrossRef]
  14. V. L. Tuft, S. Bjornstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet switched optical network,” IEEE Photon. Technol. Lett. 19, 1460-1462 (2007).
  15. E. Van Breusegem, J. Cheyns, D. De Winter, D. Colle, M. Pickavet, F. De Turck, and P. Demeester, “Overspill routing in optical networks: a true hybrid optical network design,” IEEE J. Sel. Areas Commun. 24, 13-25 (2006). [CrossRef]
  16. C. M. Gauger, P. J. Kühn, E. Van Breusegem, M. Pickavet, and P. Demeester, “Hybrid optical network architectures: bringing packets and circuits together,” IEEE Commun. Mag. 44(8), 36-42 (2006).
  17. S. Bjornstad, D. R. Hjelme, and N. Stol, “A packet switched hybrid optical network with service guarantees,” IEEE J. Sel. Areas Commun. 24, 97-107 (2006).
  18. C. Qiao, W. Wei, and X. Liu, “Extending generalized multiprotocol label switching (GMPLS) for polymorphous, agile, and transparent optical networks (PATON),” IEEE Commun. Mag. 44(12), 104-114 (2006). [CrossRef]
  19. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941-951 (2000). [CrossRef]
  20. H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers, and W. Weiershausen, “Measurement of the maximum speed of PMD fluctuation in installed field fiber,” in Optical Fiber Communication Conference, Vol. 2 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper WE4.
  21. M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiberoptic systems,” in Proceedings of the 18th Annual Meeting of the IEEE LEOS (IEEE, 2005), pp. 414-415.
  22. C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and S. C. Diot, “Packet-level traffic measurements from the Sprint IP backbone,” IEEE Network 17(6), 6-16 (2003).
  23. P. M. Krummrich, E.-D. Schmidt, W. Weiershausen, and A. Mattheus, “Field trial results on statistics of fast polarization changes in long haul WDM transmission systems,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThT6.
  24. K. J. Park, H. C. Ji, and Y. C. Chung, “Optical channel monitoring technique using phase-modulated pilot tones,” IEEE Photon. Technol. Lett. 17, 2481-2483 (2005). [CrossRef]
  25. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8, 1264-1266 (1996). [CrossRef]
  26. Product information available online at http://www.ineoquest.com.
  27. L. Nelson and H. Kogelnik, “Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion,” Opt. Express 7, 350-361 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited