OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 1, Iss. 3 — Aug. 1, 2009
  • pp: 245–258

Analysis of Power Consumption in Future High-Capacity Network Nodes

Slaviša Aleksić  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 1, Issue 3, pp. 245-258 (2009)
http://dx.doi.org/10.1364/JOCN.1.000245


View Full Text Article

Enhanced HTML    Acrobat PDF (1507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Power consumption and the footprint of future network elements are expected to become the main limiting factors for scaling the current architectures and approaches to capacities of hundreds of terabits or even petabits per second. Since the underlying demand for network capacity can be satisfied only by contemporaneously increasing transmission bit rate, processing speed, and switching capacity, it unavoidably will lead to increased power consumption of network nodes. On the one hand, using optical switching fabrics could relax the limitations to some extent, but large optical buffers occupy larger areas and dissipate more power than electronic ones. On the other hand, electronic technology has made fast progress during the past decade regarding reduced feature size and decreased power consumption. It is expected that this trend will continue in the future. This paper addresses power consumption issues in future high-capacity switching and routing elements and examines different architectures based on both pure packet-switched and pure circuit-switched designs by assuming either all-electronic or all-optical implementation, which can be seen as upper and lower bounds regarding power consumption. The total power consumption of a realistic and appropriate technology for future high-performance core network nodes would probably lie somewhere between those two extreme cases. Our results show that implementation in optics is generally more power efficient; especially circuit-switched architectures have a low power consumption. When taking into account possible future developments of Si CMOS technology, even very large electronic packet routers having capacities of more than hundreds of terabits per second seem to be feasible. Because circuit switching is more power efficient and easier to implement in optics than pure packet switching, the scalability limitation due to increased power consumption could be considerably relaxed when a kind of dynamic optical circuit switching is used within the core network together with an efficient flow aggregation at edge nodes.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers

ToC Category:
Regular Papers

History
Original Manuscript: November 3, 2008
Revised Manuscript: March 24, 2009
Manuscript Accepted: June 12, 2009
Published: July 31, 2009

Citation
Slaviša Aleksić, "Analysis of Power Consumption in Future High-Capacity Network Nodes," J. Opt. Commun. Netw. 1, 245-258 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-1-3-245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, N. McKeown, “Scaling internet routers using optics,” in Proc. 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, Aug. 25–29, 2003, pp. 189–200.
  2. Intel IXP2855 Network Processor, Intel Corporation, http://www.intel.com/networkprocessors.
  3. Cisco IP Router CR1, Cisco Systems, http://www.cisco.com.
  4. Juniper Networks, T Series Routing Platforms, http://www.juniper.net.
  5. H. J. Chao, K.-L. Deng, Z. Jing, “Petastar: a petabit photonic packet switch,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1096–1112, 2003. [CrossRef]
  6. C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, C. Diot, “Packet-level traffic measurements from the sprint IP backbone,” IEEE Netw. Mag., vol. 17, no. 6, pp. 6–16, Nov.–Dec 2002. [CrossRef]
  7. A. Banerjee, J. Drake, J. Lang, B. Turner, D. Awduche, L. Berger, K. Kompella, Y. Rekhter, “Generalized multiprotocol label switching: an overview of signaling enhancements and recovery techniques,” IEEE Commun. Mag., vol. 39, no. 7, pp. 144–151, July 2001.
  8. A. Banerjee, J. Drake, J. Lang, B. Turner, K. Kompella, Y. Rekhter, “Generalized multiprotocol label switching: an overview of routing and management enhancements,” IEEE Commun. Mag., vol. 39, no. 1, pp. 144–150, Jan. 2001.
  9. ITU Telecommunication Standardization Sector, “Architecture for the automatic switched transport network (ASTN),” ITU-T Rec. G.807/Y.1302 ed, Nov. 2001.
  10. G. Bernstein, B. Rajagopalan, D. Spears, “OIF UNI 1.0—controlling optical networks,” White paper, Optical Internetworking Forum, 2001.
  11. ITU Telecommunication Standardization Sector, “Optical transport network (OTN),” ITU-T Rec. G.709/Y1331 ed., Mar. 2003.
  12. ITU Telecommunication Standardization Sector, “Optical transport hierarchy,” ITU-T Rec. G.871/Y.1301 ed., 2000.
  13. P. Molinero-Fernández, N. McKeown, “TCP switching: exposing circuits to IP,” IEEE MICRO, vol. 22, no. 1, pp. 82–89, Jan.–Feb. 2002. [CrossRef]
  14. E. W. M. Wong, M. Zukerman, “Analysis of an optical hybrid switch,” IEEE Commun. Lett., vol. 10, pp. 108–110, 2006. [CrossRef]
  15. N. Yamanaka, K. Shiomoto, “DTM: dynamic transfer mode based on dynamically assigned short-hold time-slot relay,” IEICE Trans. Commun., E-82b, pp. 439–446, 1999.
  16. J. Baert, M. De Leenheer, B. Volckaert, T. Wauters, P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeester, “Hybrid optical switching for data-intensive media grid applications,” in Proc. of the Workshop on Design of Next Generation Optical Networks, Ghent, Belgium, Feb. 2006, pp. 9–14.
  17. S. Bjørnstad, L. E. Eriksen, D. R. Hjelme, “The OpMiGua multiservice optical hybrid packet/circuit switched network supporting TV-broadcasting QoS requirements,” in 2006 Int. Conf. on Transparent Optical Networks, Nottingham, UK, June 18–22, 2006, vol. 3, pp. 219–224.
  18. C. M. Gauger, P. J. Kuhn, E. Van Breusegem, M. Pickavet, P. Demeester, “Hybrid optical network architectures: bringing packets and circuits together,” IEEE Commun. Mag., vol. 44, no. 8, pp. 36–42, Aug. 2006. [CrossRef]
  19. H. R. van As, “Time for a change in electronic and photonic switching,” in 10th Anniversary Int. Conf. on Transparent Optical Networks, 2008. ICTON 2008, Athens, Greece, June 22–26, 2008, vol. 1, pp. 140–143.
  20. R. S. Tucker, The role of optics and electronics in high-capacity routers, J. Lightwave Technol., vol. 24, pp. 4655–4673, 2006. [CrossRef]
  21. The International Technology Roadmap for Semiconductors, 2005 ed., http://www.itrs.net.
  22. G. Epps, D. Tsiang, T. Boures, “System power challenges,” presented at Cisco Routing Research Seminar, Aug. 29–30, 2006.
  23. “IEEE P802.3ba 40 Gb∕s and 100 Gb∕s ethernet task force,” http://www.ieee802.org/3/ba/.
  24. S. Chandrasekhar, X. Liu, E. C. Burrows, L. L. Buhl, “Hybrid 107-Gb∕s polarization-multiplexed DQPSK and 42.7 DQPSK transmission at 1.4- bits∕s∕Hz spectral efficiency over 1280 km of SSMF and 4 bandwidth-managed ROADMs,” presented at 33rd European Conf. and Exhibition on Optical Communications, Berlin, Germany, Sept. 16–20, 2007, paper PD 1.92.
  25. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Scmidt, T. Wuth, E. de Man, G. D. Khoe, H. de Waardt, “10×111 Gbit∕s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation,” in Optical Fiber Communication Conf. and Exposition and The Nat. Fiber Optic Engineers Conf., Anaheim, CA, March 25, 2007, OSA Technical Digest Series (CD), Washington, DC: Optical Society of America, 2007, paper PDP22.
  26. H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, H. Fukuyama, “20.4-Tb∕s(204×111 Gb∕s) transmission over 240 km using hybrid Raman/EDFAs,” in Optical Fiber Communication Conf. and Exposition and The Nat. Fiber Optic Engineers Conf., Anaheim, CA, March 25, 2007, OSA Technical Digest Series (CD), Washington, DC: Optical Society of America, 2007, paper PDP20.
  27. P. J. Winzer, G. Raybon, C. R. Doerr, L. L. Buhl, T. Kawanishi, T. Sakamoto, M. Izutsu, K. Higuma, “2000-km WDM transmission of 10×107-Gb∕s RZ-DQPSK,” presented at European Conf. on Optical Communication, Cannes, France, Sept. 24–28, 2006, paper Th 4.1.3.
  28. P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, C. Dorrer, “107-Gb∕s optical signal generation using electronic time-division multiplexing,” J. Lightwave Technol., vol. 24, pp. 3107–3113, 2006. [CrossRef]
  29. R. H. Derksen, G. Lehmann, C.-J. Weiske, C. Schubert, R. Ludwig, S. Ferber, C. Schmidt-Langenhorst, M. Moeller, J. Lutz, “Integrated 100 Gbit∕s ETDM receiver in a transmission experiment over 480 km DMF,” in Optical Fiber Communication Conf. and Exposition and The Nat. Fiber Optic Engineers Conf., Anaheim, CA, March 5, 2006, Technical Digest (CD), Washington, DC: Optical Society of America, 2006, paper PDP37.
  30. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud, “100-Gb∕s DQPSK transmission: from laboratory experiments to field trials,” J. Lightwave Technol., vol. 26, no. 20, pp. 3388–3402, 2008. [CrossRef]
  31. SHF Communication Technologies AG, http://www.shf.de.
  32. R.-E. Makon, R. Driad, K. Schneider, M. Ludwig, R. Aidam, R. Quay, M. Schlechtweg, G. Weimann, “80 Gbit∕s monolithically integrated clock and data recovery circuit with 1:2 DEMUX using InP-based DHBTs,” in IEEE Compound Semiconductor Integrated Circuit Symp., 2005, CSIC ’05, Palm Springs, CA, Oct. 30–Nov. 2005, pp. 268–271.
  33. EM4, Inc., http://www.em4inc.com/.
  34. u2t Photonics AG, http://www.u2t.de/.
  35. Broadcom, Corporation, http://www.broadcom.com/.
  36. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J., vol. 32, pp. 406–424, 1953. [CrossRef]
  37. K.-H. Tsai, D.-W. Wang, “Lower bounds for wide-sense non-blocking Clos network,” in Computing and Combinatorics: 4th Annual Int. Conf., Taipei, Taiwan, August 1998, pp. 213–218, vol. 1449 of Lecture Notes in Computer Science, Berlin, Germany: Springer, 1998.
  38. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgueille, D. Chiaroni, “A highly integrated 32-SOA gates optoelectronic module suitable for IP milti-terabit optical packet routers,” in Optical Fiber Communication Conf. and Exhibit, 2001. OFC 2001, Anaheim, CA, 2001, vol. 4, pp. PD32-1–PD32-3.
  39. T. Hatta, T. Miyahara, Y. Miyazaki, K. Takagi, K. Matsumoto, T. Aoyagi, K. Motoshima, K. Mishina, A. Maruta, K. Kitayama, “Polarization-insensitive monolithic 40-Gbps SOA-MZI wavelength converter with narrow active waveguides,” IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 32–39, 2007. [CrossRef]
  40. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, M. Renaud, “40-Gb∕s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 12, pp. 3332–334, 2000.
  41. M. Y. Jeon, Y. A. Leem, D. C. Kim, E. Sim, S.-B. Kim, H. Ko, D. S. Yee, K. H. Park, “40 Gbps all-optical 3R regeneration and format conversion with related InP-based semiconductor devices,” ETRI J., vol. 29, pp. 633–640, 2007. [CrossRef]
  42. J. P. Wang, S. J. Savage, B. S. Robinson, S. A. Hamilton, E. P. Ippen, R. Mu, H. Wang, L. Spiekman, B. B. Stefanov, “Regeneration using an SOA-MZI in a 100-pass 10,000-km recirculating fiber loop,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Technologies, Baltimore, MD, May 6, 2007, OSA Technical Digest Series (CD), Washington, DC: Optical Society of America, 2007, paper CMZ1.
  43. W. Mao, X. Wang, M. Al-Mumin, G. Li, “40 Gb∕s all-optical clock recovery using three section self-pulsation DFB lasers,” in Optical Fiber Communication Conf., Baltimore, MD, March 7, 2000, OSA Technical Digest Series, Washington, DC: Optical Society of America, 2000, paper ThF2, pp. 79–80.
  44. C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit∕s,” Electron. Lett., vol. 36, pp. 327–328, 2000. [CrossRef]
  45. O. Leclerc, B. Lavigne, B. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit∕s system demonstration,” C. R. Phys., vol. 4, no. 1, pp. 163–173, Jan.–Feb. 2003. [CrossRef]
  46. J. P. Mack, H. N. Poulsen, D. J. Blumenthal, “40Gb∕s autonomous optical packet synchronizer,” in Optical Fiber Communication Conf. and Exposition and The Nat. Fiber Optic Engineers Conf., San Diego, CA, Feb. 24, 2008, OSA Technical Digest (CD), Washington, DC: Optical Society of America, 2008, paper OTuD3.
  47. A. Stavdas, A. Salis, A. Dupas, D. Chiaroni, “All-optical packet synchronizer for slotted core/metropolitan networks,” J. Opt. Netw., vol. 7, pp. 88–93, 2008. [CrossRef]
  48. T. Sakamoto, A. Okada, M. Hirayama, Y. Sakai, O. Moriwaki, I. Ogawa, R. Sato, K. Noguchi, M. Matsuoka, “Optical packet synchronizer using wavelength and space switching,” IEEE Photon. Technol. Lett., vol. 14, pp. 1360–1362, 2002. [CrossRef]
  49. Z. Hu, J. Sun, L. Liu, J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B, vol. 91, nos. 3–4, pp. 421–424, June 2008. [CrossRef]
  50. M. Yano, F. Yamagishi, T. Tsuda, “Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks,” IEEE J. Sel. Top. Quantum Electron., vol. 11, pp. 383–394, 2005. [CrossRef]
  51. Crosspoint Switches VSC3040, VSC3004, and VSC3008, Vitesse Semiconductor Corporation, http://www.vitesse.com/products
  52. C. Kromer, G. Sialm, C. Berger, T. Morf, M. L. Schmatz, F. Ellinger, D. Erni, G.-L. Bona, H. Jäckel, “A 100-mW410 Gb∕s transceiver in 80-nm CMOS for high-density optical interconnects,” IEEE J. Solid-State Circuits, vol. 40, pp. 2667–2679, 2005. [CrossRef]
  53. P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, L. T. Smit, “An energy-efficient reconfigurable circuit-switched network-on-chip,” in 19th IEEE Int. Parallel and Distributed Processing Symp., 2005. Proceedings, Denver, CO, Apr. 4–8, 2005, paper A155.
  54. P.-H. Pham, Y. Kumar, C. Kim, “High performance and area-efficient circuit-switched network on chip design,” in The 6th IEEE Int. Conf. on Computer and Information Technology, 2006. CIT '06, Seoul, South Korea, Sept. 2006, p. 243.
  55. K.-C. Chang, J.-S. Shen, T.-F. Chen, “Tailoring circuit-switched network-on-chip to application-specific system-on-chip by two optimization schemes,” in ACM Trans. Design Autom. Electron. Syst., vol. 13, no. 1, article 12, Jan. 2008. [CrossRef]
  56. Extreme Networks, Inc., “Black diamond 20808 switch,” http://www.extremenetworks.com/.
  57. R. F. Kalman, L. G. Kazovsky, J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 4, pp. 1040–1051, 1992. [CrossRef]
  58. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol., vol. 7, pp. 1071–1082, 1989. [CrossRef]
  59. S. Tanaka, S.-H. Jeong, S. Yamazaki, S. Tomabechi, A. Uetake, M. Ekawa, K. Morito, “Polarization-insensitive monolithically-integrated 8:1 SOA gate switch with large gain and high extinction ratio,” in Optical Fiber Communication Conf. and Exposition and The Nat. Fiber Optic Engineers Conf., San Diego, CA, Feb. 24, 2008, OSA Technical Digest (CD), Washington, DC: Optical Society of America, 2008, paper OWE2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited