OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 1, Iss. 5 — Oct. 1, 2009
  • pp: 452–462

Generation of Correlated Scintillations on Atmospheric Optical Communications

Antonio Jurado-Navas and Antonio Puerta-Notario  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 1, Issue 5, pp. 452-462 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An effective procedure for generating m equal-power log-normal scintillation sequences with any desired cross-correlation coefficient is presented. The method is focused on a multichannel generalization of the autoregressive variate generation method in order to satisfy Taylor’s hypothesis of frozen turbulence. Then the effect of the turbulent kinetic energy dissipation rate, ε, is included in the model, breaking the uniformity of the frozen-in hypothesis and obtaining a highly realistic behavior in the generated sequences when realistic scenarios are considered in which turbulence-induced fading may be correlated.

© 2009 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(030.7060) Coherence and statistical optics : Turbulence

ToC Category:
Research Papers

Original Manuscript: April 9, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 30, 2009
Published: September 18, 2009

Antonio Jurado-Navas and Antonio Puerta-Notario, "Generation of Correlated Scintillations on Atmospheric Optical Communications," J. Opt. Commun. Netw. 1, 452-462 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 46–51, Nov. 2006. [CrossRef]
  2. S. M. Haas, J. H. Shapiro, V. Tarokh, “Space-time codes for wireless optical communications,” EURASIP J. Appl. Signal Process., vol. 2002, no. 3, pp. 211–220, March 2002. [CrossRef]
  3. S. Arnon, “Effects of atmospheric turbulence and building sway on optical wireless-communication systems,” Opt. Lett., vol. 28, no. 2, pp. 129–131, Jan. 2003. [CrossRef] [PubMed]
  4. X. Zhu, J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1293–1300, Aug. 2002. [CrossRef]
  5. L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random Media. Bellingham, WA: SPIE, 1998.
  6. M. Al Naboulsi, H. Sizun, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, Feb. 2004. [CrossRef]
  7. S. S. Muhammad, P. Kohldorfer, E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Proc. 2005 7th Int. Conf. on Transparent Optical Networks, Barcelona, Spain, July 3–7, 2005, vol. 1, pp. 407–410.
  8. M. M. Ibrahim, A. M. Ibrahim, “Performance analysis of optical receivers with space diversity reception,” IEE Proc.-Commun., vol. 143, no. 6, pp. 369–372, Dec. 1996. [CrossRef]
  9. E. J. Lee, V. W. S. Chan, “Part I: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1896–1906, Nov. 2004. [CrossRef]
  10. M. Razavi, J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 975–983, May 2005. [CrossRef]
  11. J. A. Anguita, M. A. Neifeld, B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt., vol. 46, no. 26, pp. 6561–6571, Sept. 2007. [CrossRef] [PubMed]
  12. R. B. Ertel, J. H. Reed, “Generation of two equal power correlated Rayleigh fading envelopes,” IEEE Commun. Lett., vol. 2, pp. 276–278, Oct. 1998. [CrossRef]
  13. N. C. Beaulieu, M. L. Merani, “Efficient simulation of correlated diversity channels,” in IEEE Wireless Communications and Networking Conf., 2000. WCNC 2000, Chicago, IL, Sept. 23–28, 2000, vol. 1, pp. 207–210.
  14. N. C. Beaulieu, “Generation of correlated Rayleigh fading envelopes,” IEEE Commun. Lett., vol. 3, no. 6, pp. 172–174, June 1999. [CrossRef]
  15. A. Belmonte, B. Martin, W. I. Goldburg, “Experimental study of Taylor’s hypothesis in a turbulent soap film,” Phys. Fluids, vol. 12, no. 4, pp. 835–845, April 2000. [CrossRef]
  16. K. E. Baddour, N. C. Beaulieu, “Accurate simulation of multiple cross-correlated fading channels,” in IEEE Int. Conf. on Communications, 2002, New York, NY, April 28–May 2, 2002, vol. 1, pp. 267–271.
  17. T. Burghelea, E. Segre, V. Steinberg, “Validity of the Taylor hypothesis in a random spatially smooth flow,” Phys. Fluids, vol. 17, no. 10, paper 103101, Oct. 2005. [CrossRef]
  18. C. I. Moore, H. R. Barris, M. F. Stell, L. Wasiczko, M. R. Suite, R. Mahon, W. S. Rabinovich, G. C. Gilbreath, W. J. Scharpf, “Atmospheric turbulence studies of a 16 km maritime path,” Proc. SPIE, vol. 5793, pp. 78–88, 2005. [CrossRef]
  19. A. Christen, E. van Gorsel, R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol., vol. 27, no. 14, pp. 1955–1968, Oct. 2007. [CrossRef]
  20. G. E. Willis, J. W. Deardorff, “On the use of Taylor’s hypothesis for diffusion in the mixed layer,” Q. J. R. Meteorol. Soc., vol. 102, no. 434, pp. 817–822, Oct. 1976. [CrossRef]
  21. A. Christen, M. W. Rotach, R. Vogt, “Experimental determination of the turbulent kinetic energy budget within and above an urban canopy,” in Fifth Conf. on Urban Environment, Vancouver, Canada, Aug. 23–27, 2004, paper 6.4.
  22. M. C. R. Kalapureddy, K. K. Kumar, V. Sivakumar, A. K. Ghosh, A. R. Jain, K. K. Reddy, “Diurnal and seasonal variability of TKE dissipation rate in the ABL over a tropical station using UHF wind profiler,” J. Atmos. Sol.-Terr. Phys., vol. 69, nos. 4–5, pp. 419–430, April 2007. [CrossRef]
  23. J. W. Strohbehn, “Modern theories in the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere. New York, NY: Springer, 1978, chap. 3, pp. 45–106. [CrossRef]
  24. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am., vol. 57, no. 2, pp. 169–175, Feb. 1967. [CrossRef]
  25. A. Jurado Navas, A. García Zambrana, A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett., vol. 43, no. 3, pp. 178–179, Feb. 2007. [CrossRef]
  26. L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Aperture averaging of optical scintillations power fluctuations and the temporal spectrum,” Waves Random Complex Media, vol. 10, no. 1, pp. 53–70, Jan. 2000. [CrossRef]
  27. L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam, Scintillation With Applications. Bellingham, WA: SPIE, 2001. [CrossRef]
  28. A. D. Wheelon, Electromagnetic Scintillation: II. Weak Scattering. New York, NY: Cambridge Univ. Press, 2003. [CrossRef]
  29. S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
  30. G. Alefeld, G. Mayer, “The Cholesky method for interval data,” Linear Algebra Its Appl., vol. 194, pp. 161–182, Nov. 1993. [CrossRef]
  31. G. A. Holton, Value at Risk: Theory and Practice. San Diego, CA: Academic, 2004.
  32. Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov, “Detection-estimation of more uncorrelated Gaussian sources than sensors in nonuniform linear antenna arrays—part I: Fully augmentable arrays,” IEEE Trans. Signal Process., vol. 49, no. 5, pp. 959–971, May 2001. [CrossRef]
  33. J. F. Monserrat, R. Fraile, L. Rubio, “Application of alternating projection method to ensure feasibility of shadowing cross-correlation models,” Electron. Lett., vol. 43, no. 13, pp. 724–725, June 2007. [CrossRef]
  34. G. H. Golub, C. F. van Loan, Matrix Computations. Baltimore, MD: John Hopkins Univ. Press, 1996.
  35. P. R. Halmos, “Positive approximants of operators,” Indiana Univ. Math. J., vol. 21, no. 10, pp. 951–960, Oct. 1972. [CrossRef]
  36. G. Strang, Linear Algebra and Its Applications. 41st ed., Belmont, CA: Thomson, 2006.
  37. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation. Jerusalem, Israel: Program for Scientific Translations, 1971.
  38. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov. New York, NY: Cambridge Univ. Press, 1995.
  39. T. Kyle, Atmospheric Transmission, Emission and Scattering. Oxford, UK: Pergamon, 1993.
  40. J. L. Lumley, “Interpretation of time spectra measured in high-intensity shear flows,” Phys. Fluids, vol. 8, no. 6 pp. 1056–1062, June 1965. [CrossRef]
  41. N. K. Vinnichenko, J. A. Dutton, “Empirical studies of atmospheric structure and spectra in the free atmosphere,” Radio Sci., vol. 4, no. 12, pp. 1115–1126, Dec. 1969. [CrossRef]
  42. W. K. Hocking, P. K. L. Mu, “Upper and middle tropospheric kinetic energy dissipation rates from measurements of Cn2—review of theories, in-situ investigations, and experimental studies using the Buckland park atmospheric radar in Australia,” J. Atmos. Sol.-Terr. Phys., vol. 59, no. 14, pp. 1779–1803, Sept. 1997. [CrossRef]
  43. R. Hill, R. Frehlich, W. Otto, The Probability Distribution of Irradiance Scintillation, NOAA Technical Memorandum ERL ETL-274, Jan. 1997.
  44. M. W. Rotach, “On the influence of the urban roughness sublayer on turbulence and dispersion,” Atmos. Environ., vol. 33, pp. 4001–4008, Oct. 1999. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited