OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 1, Iss. 6 — Nov. 1, 2009
  • pp: 555–564

Suppression of Fiber Nonlinearities and PMD in Coded-Modulation Schemes With Coherent Detection by Using Turbo Equalization

Ivan B. Djordjevic, Lyubomir L. Minkov, Lei Xu, and Ting Wang  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 1, Issue 6, pp. 555-564 (2009)
http://dx.doi.org/10.1364/JOCN.1.000555


View Full Text Article

Acrobat PDF (341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a maximum a posteriori probability (MAP) turbo equalizer based on the sliding-window multilevel Bahl-Cocke-Jelinek-Raviv algorithm. This scheme is suitable for simultaneous nonlinear and linear impairment mitigation in multilevel coded-modulation schemes with coherent detection. The proposed scheme employs large-girth quasi-cyclic LDPC codes as channel codes. We demonstrate the efficiency of this method in dealing with fiber nonlinearities by performing Monte Carlo simulations. In addition, we provide the experimental results that demonstrate the efficiency of this method in dealing with polarization mode dispersion. We also study the ultimate channel capacity limits, assuming an independent identically distributed source.

© 2009 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Research Papers

History
Original Manuscript: June 26, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: September 30, 2009
Published: October 28, 2009

Citation
Ivan B. Djordjevic, Lyubomir L. Minkov, Lei Xu, and Ting Wang, "Suppression of Fiber Nonlinearities and PMD in Coded-Modulation Schemes With Coherent Detection by Using Turbo Equalization," J. Opt. Commun. Netw. 1, 555-564 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-1-6-555


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express , vol. 16, pp. 804-817, Jan. 2008. [CrossRef]
  2. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, and S. Radic, “Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 5-10 March 2006, paper OWB7.
  3. I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun. , vol. 26, no. 6, pp. 73-83, Aug. 2008. [CrossRef]
  4. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. , vol. 101, paper 163901, Oct. 2008. [CrossRef]
  5. E. Ip and J. M. Kahn, “Nonlinear impairment compensation using backpropagation,” in Optical Fibre, New Developments. Vienna, Austria: In-Tech, to be published.
  6. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express , vol. 15, pp. 9936-9947, 2007. [CrossRef]
  7. I. B. Djordjevic, L. Xu, and T. Wang, “Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LCPC codes,” Opt. Express , vol. 16, no. 14, pp. 10269-10278, July 2008. [CrossRef]
  8. I. B. Djordjevic, “Suppression of intrachannel nonlinearities in high-speed WDM systems,” in Advanced Technologies for High-Speed Optical Communications, L.Xu, ed. Trivandrum-Kerala, India: Research Signpost, 2007, pp. 247-277.
  9. M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matricies,” JETP , vol. 50, pp. 1788-1794, Aug. 2004.
  10. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory , vol. IT-20, pp. 284-287, Mar. 1974. [CrossRef]
  11. W. E. Ryan, “Concatenated convolutional codes and iterative decoding,” in Wiley Encyclopedia of Telecommunications, J.G.Proakis, ed. New York: Wiley, 2002.
  12. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun. , vol. 40, pp. 1727-1737, Oct. 2001. [CrossRef]
  13. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications. Upper Sadle River: Pearson Prentice-Hall, 2004.
  14. I. B. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, “Achievable information rates for high-speed long-haul optical transmission,” J. Lightwave Technol. , vol. 23, pp. 3755-3763, Nov. 2005. [CrossRef]
  15. M. Ivkovic, I. B. Djordjevic, and B. Vasic, “Calculation of achievable information rates of long-haul optical transmission systems using instanton approach,” J. Lightwave Technol. , vol. 25, pp. 1163-1168, May 2007. [CrossRef]
  16. J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. , vol. 10, no. 2, pp. 259-272, Mar./Apr. 2004. [CrossRef]
  17. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fiber communications,” Nature , vol. 411, no. 6841, pp. 1027-1030, June 2001. [CrossRef]
  18. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Information capacity of optical fiber channels with zero average dispersion,” Phys. Rev. Lett. , vol. 91, no. 20, paper 203901, Nov. 2003. [CrossRef]
  19. J. Tang, “The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver,” J. Lightwave Technol. , vol. 20, no. 7, pp. 1095-1101, July 2002. [CrossRef]
  20. M. Ivkovic, I. Djordjevic, P. Rajkovic, and B. Vasic, “Pulse energy probability density functions for long-haul optical fiber transmission systems by using instantons and Edgeworth expansion,” IEEE Photon. Technol. Lett. , vol. 19, no. 20, pp. 1604-1606, Oct. 2007. [CrossRef]
  21. J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfitser, “Capacity approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inf. Theory , vol. 49, no. 9, pp. 2141-2155, Sept. 2003. [CrossRef]
  22. G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory , vol. 44, pp. 927-946, May 1998. [CrossRef]
  23. H. Xiao-Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE GLOBECOM, vol. 2, Nov. 2001, pp. 1036-1036E.
  24. G. Colavolpe, G. Ferrari, and R. Raheli, “Reduced-sate BCJR-type algorithms,” IEEE J. Sel. Areas Commun. , vol. 19, pp. 848-858, May 2001. [CrossRef]
  25. I. B. Djordjevic and B. Vasic, “Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/s optical communication systems,” Opt. Express , vol. 14, pp. 4625-4635, 2006. [CrossRef]
  26. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
  27. F. M. Reza, An Introduction to Information Theory. New York: McGraw-Hill, 1961.
  28. W. T. Webb, and R. Steele, “Variable rate QAM for mobile radio,” IEEE Trans. Commun. , vol. 43, pp. 2223-2230, July 1995. [CrossRef]
  29. J. G. Proakis, Digital Communications. Boston: McGraw Hill, 2001.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited