## Average Symbol Error Probability of General-Order Rectangular Quadrature Amplitude Modulation of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels

Journal of Optical Communications and Networking, Vol. 2, Issue 2, pp. 102-110 (2010)

http://dx.doi.org/10.1364/JOCN.2.000102

Enhanced HTML Acrobat PDF (441 KB)

### Abstract

Using an accurate exponential bound for the Gaussian **
Q
**-function, we derive simple approximate closed-form expressions for the average symbol error probability (ASEP) of a free-space optical communication link using subcarrier intensity modulation (SIM) with general-order rectangular quadrature amplitude modulation (QAM) over atmospheric turbulence channels. To model the atmospheric turbulence conditions, the log-normal and the gamma-gamma distribution are used. Extensive numerical and computer simulation results are presented in order to verify the accuracy of the proposed mathematical analysis.

© 2010 Optical Society of America

**OCIS Codes**

(010.7060) Atmospheric and oceanic optics : Turbulence

(350.0350) Other areas of optics : Other areas of optics

**ToC Category:**

Research Papers

**History**

Original Manuscript: September 21, 2009

Revised Manuscript: November 12, 2009

Manuscript Accepted: December 11, 2009

Published: January 19, 2010

**Citation**

Kostas P. Peppas and Christos K. Datsikas, "Average Symbol Error Probability of General-Order Rectangular Quadrature Amplitude Modulation of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels," J. Opt. Commun. Netw. **2**, 102-110 (2010)

http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-2-2-102

Sort: Year | Journal | Reset

### References

- D. Keddar, S. Amon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Opt. Commun., vol. 42, no. 5, pp. 51–57, May 2004.
- Optical Wireless Communications, Encyclopedia of Optical Enginering. New York: Marcel Dekker, 2003, pp. 1866–1886.
- A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep., vol. 2, pp. 345–396, 2005. [CrossRef]
- R. Gagliardi, S. Karp, Optical Communications. New York: Wiley, 1995.
- L. Andrews, R. L. Philips, C. Y. Hopen, Laser Beam Scintillation With Applications. SPIE Press, 2001. [CrossRef]
- D. L. Fried, G. E. Mevers, M. P. Keister, “Measurements of laser-beam scintillation in the atmosphere,” J. Opt. Soc. Am., vol. 59, pp. 1455–1460, Nov. 1969. [CrossRef]
- I. I. Kim, E. Woodbridge, V. Chan, B. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” Proc. SPIE, vol. 3266, pp. 209–220, 1998. [CrossRef]
- M. A. Al-Habash, L. C. Andrews, R. L. Phillips, “Mathematical model for the irradiance PDF of a laser beam propagating through turbulent media,” Opt. Eng, vol. 40, no. 8, pp. 1554–1562, 2001. [CrossRef]
- L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, R. L. Phillips, “Theory of optical scintillation: Gaussian beam wave model,” Waves Random Media, vol. 11, no. 3, pp. 271–291, 2001. [CrossRef]
- M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1229–1233, June 2006. [CrossRef]
- T. Kamalakis, T. Sphicopoulos, S. S. Muhammad, E. Leitgeb, “Estimation of the power scintillation probability density function in free-space optical links by use of multicanonical Monte Carlo sampling,” Opt. Lett., vol. 31, no. 21, pp. 3077–3079, 2006. [CrossRef] [PubMed]
- F. S. Vetelino, S. Young, L. Andrews, “Fade statistics and aperture averaging for Gaussian beam waves in moderate to strong turbulence,” Appl. Opt., vol. 46, no. 18, pp. 3780–3789, 2007. [CrossRef] [PubMed]
- X. Zhu, J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1293–1300, Aug. 2002. [CrossRef]
- X. Zhu, J. M. Kahn, J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” IEEE Photon. Technol. Lett., vol. 15, no. 15, pp. 623–625, Apr. 2003. [CrossRef]
- S. M. Haas, J. H. Shapiro, “Capacity of wireless optical communications,” IEEE J. Sel. Areas Commun., vol. 21, no. 8, pp. 1436–1357, Oct. 2003. [CrossRef]
- J. H. Shapiro, R. C. Harney, “Burst-mode atmospheric optical communication,” in Proc. Nat. Telecommun. Conf., 1980, pp. 27.5.1–27.5.7.
- J. Li, J. Q. Liu, D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 55, no. 8, pp. 1598–1605, Aug. 2007. [CrossRef]
- W. Popoola, Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol. 27, no. 8, pp. 967–973, Apr. 2009. [CrossRef]
- W. Popoola, Z. Ghassemlooy, J. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol. 2, no. 1, pp. 16–23, Feb. 2008. [CrossRef]
- W. Popoola, Z. Ghassemlooy, E. Leitgeb, “BER performance of DPSK subcarrier modulated free space optics in fully developed speckle,” in 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, 2008, pp. 273–277.
- H. Rongqing, Z. Benyuan, H. Renxiang, T. Christopher, R. Kenneth, R. Douglas, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol., vol. 20, pp. 417–424, Mar. 2002. [CrossRef]
- G. Agrawal, Fiber-Optic Communication Systems. New York: Wiley-Interscience, 2002. [CrossRef]
- N. Cvijetic, T. Wang, “WiMAX over free-space optics—evaluating OFDM multi-subcarrier modulation in optical wireless channels,” in Sarnoff Symp., IEEE, 27–28 March 2006, pp. 1–4.
- A MIMO Architecture for IEEE 802.16d (WiMAX) Heterogeneous Wireless Access Using Optical Wireless Technology, Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2006, pp. 441–451.
- M. Nakazawa, M. Yoshida, K. Kasai, J. Hongou, “20 Msymbol∕s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser,” Electron. Lett., vol. 42, no. 12, pp. 710–712, June 2006. [CrossRef]
- M. Chiani, D. Dardari, M. K. Simon, “New exponential bounds and approximations for the computation of error probability in fading channels,” IEEE Trans. Wireless Commun., vol. 2, pp. 840–845, July 2003. [CrossRef]
- H. A. Suraweera, J. Armstrong, “A simple and accurate approximation to the SEP of rectangular QAM in arbitrary Nakagami-m fading channels,” IEEE Commun. Lett., vol. 11, no. 5, pp. 426–428, May 2007. [CrossRef]
- M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover, 1972.
- A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series Volume 3: More Special Functions, 1st ed.Gordon and Breech Science, 1990.
- H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, G. S. Tombras, “Average capacity of optical wireless communication systems over atmospheric turbulence channels,” J. Lightwave Technol., vol. 27, no. 8, pp. 974–979, Apr. 2009. [CrossRef]
- M. Uysal, S. M. Navidpour, J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett., vol. 8, no. 10, pp. 635–637, Oct. 2004. [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.