OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 2, Iss. 7 — Jul. 1, 2010
  • pp: 415–426

Wavelength-Routed Networks With Lightpath Data Interchanges

C. Y. Li, Lin Cai, P. K. A. Wai, Victor O. K. Li, and Anshi Xu  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 2, Issue 7, pp. 415-426 (2010)
http://dx.doi.org/10.1364/JOCN.2.000415


View Full Text Article

Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe that tunable wavelength converters (TWCs) that are traditionally installed in wavelength-routed (WR) networks for wavelength contention resolution can be further utilized to provide fast data switching between lightpaths. This allows us to route a data unit through a sequence of lightpaths from source to destination if a direct single lightpath connection is not available or if we want to minimize the overhead of setting up new lightpaths. Since TWCs have a tuning time of picoseconds, it may be possible to use the installed TWCs as lightpath data interchanges (LPIs) to improve the performance of WR networks without significant optical hardware upgrade. Compared with the multihop electronic grooming approach of lightpath networks, the LPI approach has a simpler WR node architecture, does not need expensive high-speed electrical multiplexers/routers, and does not sacrifice the bit-rate/format transparency of data between the source and destination. Our simulation results show that WR networks with LPIs can have much lower blocking probability than WR networks without LPIs if the traffic duration is short. We show that LPIs can also be used to provide new data transportation services such as optical time division multiplexing access (OTDMA) time-slotted service in WR networks.

© 2010 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Research Papers

History
Original Manuscript: December 7, 2009
Revised Manuscript: May 8, 2010
Manuscript Accepted: May 19, 2010
Published: June 9, 2010

Citation
C. Y. Li, Lin Cai, P. K. A. Wai, Victor O. K. Li, and Anshi Xu, "Wavelength-Routed Networks With Lightpath Data Interchanges," J. Opt. Commun. Netw. 2, 415-426 (2010)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-2-7-415


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Gladisch, R.-P. Braun, D. Breuer, A. Ehrhardt, H.-M. Frisel, M. Jaeger, R. Leppla, M. Schneiders, S. Verbeck, W. Weiershausen, and F.-J. Westphal, “System and core network architecture,” Proc. IEEE , vol. 94, no. 5, pp. 869–981, 2006. [CrossRef]
  2. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. , vol. 26, no. 9, pp. 1104–1118, 2008. [CrossRef]
  3. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: an approach to high bandwidth optical WANs,” IEEE Trans. Commun. , vol. 40, no. 7, pp. 1171–1182, 1992. [CrossRef]
  4. K. C. Lee and V. O. K. Li, “A wavelength-convertible optical network,” J. Lightwave Technol. , vol. 11, no. 5, pp. 962–970, 1993. [CrossRef]
  5. N. Ghani, S. Dixit, and T. S. Wang, “On IP-over-WDM integration,” IEEE Commun. Mag. , vol. 38, no. 3, pp. 72–84, 2000. [CrossRef]
  6. N. U. Kim and M. Kang, “Traffic share-based multicast scheduling for broadcast video delivery in shared-WDM-PONs,” J. Lightwave Technol. , vol. 25, no. 9, pp. 2814–2827, 2007. [CrossRef]
  7. S. Sankaranarayanan and S. Subramaniam, “Comprehensive performance modeling and analysis of multicasting in optical networks,” IEEE J. Sel. Areas Commun. , vol. 21, no. 9, pp. 1399–1413, 2003. [CrossRef]
  8. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet traffic (extended version),” IEEE/ACM Trans. Netw. , vol. 2, no. 1, pp. 1–15, 1994. [CrossRef]
  9. T. Karagiannis, M. Molle, and M. Faloutsos, “Long-range dependence ten years of Internet traffic modeling,” Inf. Manage. , vol. 8, no. 5, pp. 57–64, 2004.
  10. C. S. Xin, C. M. Qiao, and S. Dixit, “Traffic grooming in mesh WDM optical networks—performance analysis,” IEEE J. Sel. Areas Commun. , vol. 22, no. 9, pp. 1658–1669, 2004. [CrossRef]
  11. S. Huang, R. Dutta, and G. N. Rouskas, “Traffic grooming in path, star, and tree networks: complexity, bounds, and algorithms,” IEEE J. Sel. Areas Commun. , vol. 24, no. 4, pp. 66–82, 2006.
  12. T. S. El-Bawab and J.-D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. , vol. 40, no. 9, pp. 60–65, 2002. [CrossRef]
  13. D. J. Blumenthal, J. E. Bowers, L. Rau, H.-F. Chou, S. Rangarajan, W. Wang, and K. N. Poulsen, “Optical signal processing for optical packet switching networks,” IEEE Commun. Mag. , vol. 41, no. 2, pp. S23–S29, 2003. [CrossRef]
  14. C. Qiao and M. Yoo, “Optical burst switching (OBS)—a new paradigm for an optical Internet,” J. High Speed Networks , vol. 8, pp. 69–84, 1999.
  15. J. S. Tuner, “Terabit burst switching,” J. High Speed Networks , vol. 8, pp. 3–16, 1999.
  16. J. Y. Wei and R. I. McFarland, Jr., “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol. , vol. 18, no. 12, pp. 2019–2037, 2000. [CrossRef]
  17. M. Düser and P. Bayvel, “Analysis of a dynamically wavelength-routed optical burst switched network architecture,” J. Lightwave Technol. , vol. 20, no. 4, pp. 574–585, 2002. [CrossRef]
  18. M. L. Rocha, S. M. Rossi, M. R. X. Barros, L. Pezzollo, J. B. Roselem, M. F. Oliveira, A. Paradisi, T. Kauppinen, and A. Gavler, “Amplifier placement in metro-scaled wavelength-routed network,” Electron. Lett. , vol. 39, no. 3, pp. 302–304, 2003. [CrossRef]
  19. K. Noguchi, Y. Koike, H. Tanobe, K. Harada, and M. Matsuoka, “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Technol. , vol. 22, no. 2, pp. 329–336, 2004. [CrossRef]
  20. T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: a framework for service provisioning in heterogeneous grid networks,” IEEE Commun. Mag. , vol. 44, no. 3, pp. 84–90, 2006. [CrossRef]
  21. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weis, C. P. Lichtenwalner, A. R. Parpazian, R. E. Frahm, N. P. Basavanhally, D. A. Ramsey, V. A. Aksyule, F. Pardo, M. S. Simon, V. Lifton, H. R. Chan, M. Hauies, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodne, R. Ryf, D. T. Neilson, and J. V. Coate, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon. Technol. Lett. , vol. 15, no. 11, pp. 1537–1539, 2003. [CrossRef]
  22. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic Internet,” J. Lightwave Technol. , vol. 24, no. 12, pp. 4468–4492, 2006. [CrossRef]
  23. S. Sygletos, I. Tomaos, and J. Leuthold, “Technological challenges on the road toward transparent networking,” J. Opt. Netw. , vol. 7, no. 4, pp. 321–350, 2008. [CrossRef]
  24. P. Bernasconi, L. Zhang, W. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, and D. T. Neilson, “Monolithically integrated 40-Gb∕s switchable wavelength converter,” J. Lightwave Technol. , vol. 24, no. 1, pp. 71–76, 2006. [CrossRef]
  25. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb∕s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. , vol. 25, no. 1, pp. 103–108, 2007. [CrossRef]
  26. K. Vlachos, C. Raffaelli, S. Aleksic, N. Andriolli, D. Apastoloponlas, H. Auramoponlos, D. Erasme, D. Klonidis, M. N. Petersen, M. Scaffardi, K. Schutze, M. Spiropoulov, S. Sygletos, I. Tunkos, C. Vazquez, O. Zouraraki, and F. Neri, “Photonics in switching: enabling technologies and subsystem design,” J. Opt. Netw. , vol. 8, no. 5, pp. 404–428, 2009. [CrossRef]
  27. T. K. Chan, N. J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. G. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. , vol. 25, no. 3, pp. 719–725, 2007. [CrossRef]
  28. A. Tajima, N. Kitamura, S. Takahashi, S. Kitamura, Y. Maeno, Y. Suemurg, and N. Nenmi, “10-Gb∕s/port gated divider passive combiner optical switch with single-mode-to-multimode combiner,” IEEE Photon. Technol. Lett. , vol. 10, no. 1, pp. 162–164, 1998. [CrossRef]
  29. R. Chen, H. Zhou, G. Jiang, Y. Sun, Y. Hao, J. Yang, M. Wang, and X. Jiang, “A proposal of zero leakage-loss passive optical combiner based on nonreciprocal waveguide,” IEEE Photon. Technol. Lett. , vol. 21, no. 20, pp. 1493–1495, 2009. [CrossRef]
  30. Y. Jaouen, L. du Mouza, D. Barbier, J. M. Delavaux, and P. Bruno, “Eight-wavelength Er-Yb doped amplifier: combiner/splitter planar integrated module,” IEEE Photon. Technol. Lett. , vol. 11, no. 9, pp. 1105–1107, 1999. [CrossRef]
  31. C. Y. Li and P. K. A. Wai, “External wavelength contention resolution for optical crossconnects,” in Proc. of Opto-Electronics and Communications Conf. (OECC 2009), 2009, paper ThB6.
  32. M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious routing of highly variable traffic in service overlays and IP backbones,” IEEE/ACM Trans. Netw. , vol. 17, no. 2, pp. 459–472, 2009. [CrossRef]
  33. R. Razavi and K. Guild, “Multiconstraints fuzzy-logic-based scheduling algorithm for passive optical networks,” J. Opt. Netw. , vol. 8, no. 4, pp. 346–357, 2009. [CrossRef]
  34. N. F. Maxemchuk, “Routing in Manhattan Street network,” IEEE Trans. Commun. , vol. 35, no. 5, pp. 503–512, 1987. [CrossRef]
  35. ftp://ftp.uu.net/inet/maps/nsfnet/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited