OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 2, Iss. 8 — Aug. 1, 2010
  • pp: 545–557

Survivable Multipath Traffic Grooming in Telecom Mesh Networks With Inverse Multiplexing

Sheng Huang, Ming Xia, Chip Martel, and Biswanath Mukherjee  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 2, Issue 8, pp. 545-557 (2010)
http://dx.doi.org/10.1364/JOCN.2.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the survivable traffic grooming problem with inverse multiplexing in telecommunication mesh networks employing next-generation SONET/SDH and WDM. With the support of virtual concatenation, a connection of any bandwidth can be provisioned as several subconnections (i.e., inverse multiplexed) over diverse paths. Therefore, it is important to efficiently groom and protect these low-speed subconnections onto high-capacity wavelength channels, considering the typical constraints. We propose and investigate the characteristics of survivable multipath traffic grooming with protection-at-connection and protection-at-lightpath levels for grooming connections with shared pro- tection, subject to the constraints of the inverse-multiplexing factor, differential-delay constraint, and grooming ports. Since this problem is N P -complete, we propose effective heuristics using a novel analytical model. Our results show that (1) the network performance, in metrics of bandwidth blocking ratio and resource overbuild, can be notably improved by exploiting the inverse-multiplexing capability, (2) tight constraints have negative impact on performance, (3) protection-at-connection performs better in most cases of multipath provisioning when the constraints are not too tight, and (4) protection-at-lightpath achieves better performance when the number of grooming ports is moderate or small.

© 2010 Optical Society of America

OCIS Codes
(060.4257) Fiber optics and optical communications : Networks, network survivability
(060.4261) Fiber optics and optical communications : Networks, protection and restoration

ToC Category:
Research Papers

History
Original Manuscript: February 22, 2010
Revised Manuscript: May 23, 2010
Manuscript Accepted: May 25, 2010
Published: July 16, 2010

Citation
Sheng Huang, Ming Xia, Chip Martel, and Biswanath Mukherjee, "Survivable Multipath Traffic Grooming in Telecom Mesh Networks With Inverse Multiplexing," J. Opt. Commun. Netw. 2, 545-557 (2010)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-2-8-545

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited