OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 1 — Jan. 1, 2011
  • pp: 48–55

Information Geometrical Analysis of Additivity of Optical Quantum Channels

Laszlo Gyongyosi and Sandor Imre  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 3, Issue 1, pp. 48-55 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The additivity property of quantum channels is still an open question and an exciting subject of current research. There are some nonunital channels for which strict additivity is known, although the general rule for nonunital quantum channels is still not proven. We analyze the additivity of the amplitude damping channel, which is an important channel in physical implementations and optical communications. The effect of amplitude damping has great importance in optical communications, since this channel model describes energy dissipation. We show an efficient information computational geometric method to analyze the additivity property of the amplitude damping quantum channel, using quantum Delaunay tessellation on the Bloch ball and quantum relative entropy as a distance measure.

© 2010 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(270.5565) Quantum optics : Quantum communications

ToC Category:
Research Papers

Original Manuscript: June 24, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: October 12, 2010
Published: December 20, 2010

Laszlo Gyongyosi and Sandor Imre, "Information Geometrical Analysis of Additivity of Optical Quantum Channels," J. Opt. Commun. Netw. 3, 48-55 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Ruskai, “Some open problems in quantum information theory,” arXiv:0708.1902, 2007.
  2. M. B. Hastings, “A counterexample to additivity of minimum output entropy,” arXiv:0809.3972, 2009.
  3. F. Brandao, M. Horodecki, “On Hastings’ counterexamples to the minimum output entropy additivity conjecture,” arXiv:0907.3210, 2009.
  4. B. W. Schumacher, M. Westmoreland, “Relative entropy in quantum information theory,” arXiv:quant-ph/0004045, 2000.
  5. B. W. Schumacher, M. Westmoreland, “Optimal signal ensembles,” arXiv:quant-ph/9912122, 1999.
  6. P. Shor, “Additivity of the classical capacity of entanglementbreaking quantum channels,” J. Math. Phys., vol. 246, no. 3, pp. 453–472, 2004. [CrossRef]
  7. C. King, “Additivity for unital qubit channels,” J. Math. Phys., vol. 43, pp. 4641–4653, 2002. [CrossRef]
  8. M. Fukuda, C. King, D. K. Moser, “Comments on Hastings’ additivity counterexamples,” Commun. Math. Phys.,vol. 296, no. 1, pp. 111–143, 2010. [CrossRef]
  9. N. Datta, A. S. Holevo, Y. Suhov, “A quantum channel with additive minimum output entropy,” arXiv:quant-ph/0403072, 2004.
  10. K. Matsumoto, F. Yura, “Entanglement cost of antisymmetric states and additivity of capacity of some quantum channels,” J. Phys. A, vol. 37, pp. L167–L171, 2004. [CrossRef]
  11. M. M. Wolf, J. Eisert, “Classical information capacity of a class of quantum channels,” New J. Phys., vol. 7, no. 93, 2005. [CrossRef]
  12. M. Hayashi, H. Nagaoka, “General formulas for capacity of classical-quantum channels,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1753–1768, 2003. [CrossRef]
  13. M. Hayashi, H. Imai, K. Matsumoto, M. B. Ruskai, T. Shimono, “Qubit channels which require four inputs to achieve capacity: implications for additivity conjectures,” Quantum Inf. Comput., vol. 5, pp. 032–040, 2005.
  14. K. Kato, M. Oto, H. Imai, K. Imai, “Voronoi diagrams for pure 1-qubit quantum states,” arXiv:quant-ph/0604101, 2006.
  15. J. A. Cortese, “The Holevo-Schumacher-Westmoreland channel capacity for a class of qudit unital channels,” arXiv:quant-ph/0211093, 2002.
  16. F. Nielsen, J.-D. Boissonnat, R. Nock, “On Bregman Voronoi diagrams,” in Proc. of the 18th Annu. ACM-SIAM Symp. on Discrete Algorithms, 2007, pp. 746–755.
  17. F. Nielsen, R. Nock, “Approximating smallest enclosing balls with applications to machine learning,” Int. J. Comput. Geom. Appl., vol. 19, no. 5, pp. 389–414, Oct. 2009. [CrossRef]
  18. L. Gyongyosi, S. Imre, “Novel geometrical solution to additivity problem of classical quantum channel capacity,” in 33rd IEEE Sarnoff Symp., Princeton, NJ, 2010.
  19. L. Gyongyosi, S. Imre, “Computational geometric analysis of physically allowed quantum cloning transformations for quantum cryptography,” in Proc. of the 4th WSEAS Int. Conf. on Computer Engineering and Applications (CEA ’10). Cambridge, MA, 2010, pp. 121–126.
  20. J.-D. Boissonnat, C. Wormser, M. Yvinec, “Curved Voronoi diagrams,” in Effective Computational Geometry for Curves and Surfaces, J.-D. Boissonnat and M. Teillaud, Eds. Springer-Verlag, 2007, pp. 67–116.
  21. F. Aurenhammer, R. Klein, “Voronoi diagrams,” in Handbook of Computational Geometry, J. Sack and G. Urrutia, Eds. Elsevier Science Publishing, 2000, chap. V, pp. 201–290. [CrossRef]
  22. R. Nock, F. Nielsen, “Fitting the smallest enclosing Bregman ball,” in Proc. ECML, 2005, pp. 649–656.
  23. S. Imre, F. Balázs, Quantum Computing and Communications—An Engineering Approach. Wiley, 2005.
  24. M. B. Ruskai, S. Szarek, E. Werner, “An analysis of completely-positive trace-preserving maps on 2 by 2 matrices,” arXiv:quant-ph/0101003, 2001.
  25. M. Badoiu, S. Har-Peled, P. Indyk, “Approximate clustering via core-sets,” in Proc. 34th ACM Symp. on Theory of Computing, 2002, pp. 250–257.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited