OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 4 — Apr. 1, 2011
  • pp: 281–289

Wavelength Assignment in Multi-Carrier Distributed Optical Ring Networks With Wavelength Reuse

Masafumi Keri, Eiji Oki, and Motoharu Matsuura  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 4, pp. 281-289 (2011)
http://dx.doi.org/10.1364/JOCN.3.000281


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper investigates the problem of wavelength assignment in wavelength reusable multi-carrier distributed (WRMD) wavelength-division-multiplexing (WDM) ring networks. In conventional WDM ring networks, each edge node (EN) has its own light sources, and optical channels, called lightpaths, are established by using optical carriers generated from laser diodes (LDs) at the source EN. However, such networks will suffer from the need for complicated wavelength management (e.g., monitoring LDs, avoiding wavelength collision) in the future since each EN requires a large number of LDs to deal with the exponential increase in traffic. On the other hand, a WRMD ring network overcomes this problem. In this network, lightpaths between source and destination ENs are established by using carriers generated from a centralized multi-carrier light source. Moreover, the carrier regeneration technique is applied for the purpose of reducing the number of wavelengths used for lightpath establishment. Although optical carrier regeneration reduces the number of wavelengths, the quality of the regenerated carrier is slightly degraded after carrier regeneration. Therefore, in the WRMD network, the allowable number of carrier regenerations per wavelength must be limited in order to avoid communication error. This paper formulates the wavelength assignment problem, minimizing the number of wavelengths needed to establish all requested lightpaths, as the vertex coloring problem, and then an integer linear programming (ILP) solution is provided. Since ILP problems are non-deterministic polynomial-time- (NP-) complete, a heuristic algorithm is developed. Numerical results indicate that our developed algorithm performs well in our test cases. It is observed that one and two carrier regenerations per wavelength reduce the number of wavelengths for lightpath establishment by approximately 50% and 60%, respectively, compared to that without carrier regeneration. The results also show that regenerating carriers more than two times per wavelength has little effect on the required number of wavelengths regardless of the number of ENs.

© 2011 OSA

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms

ToC Category:
Research Papers

History
Original Manuscript: November 16, 2010
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 12, 2011
Published: March 24, 2011

Citation
Masafumi Keri, Eiji Oki, and Motoharu Matsuura, "Wavelength Assignment in Multi-Carrier Distributed Optical Ring Networks With Wavelength Reuse," J. Opt. Commun. Netw. 3, 281-289 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-4-281

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited