OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 8 — Aug. 1, 2011
  • pp: A1–A11

A Scalable Space–Time Multi-plane Optical Interconnection Network Using Energy-Efficient Enabling Technologies [Invited]

Odile Liboiron-Ladouceur, Pier Giorgio Raponi, Nicola Andriolli, Isabella Cerutti, Mohammed Shafiqul Hai, and Piero Castoldi  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 3, Issue 8, pp. A1-A11 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an energy-efficient multi-plane optical interconnection network to interconnect servers in a data center. The novel architecture uses the time domain to individually address each port within a card and the space domain to address each card. Optical enabling technologies passively time-compress serial packets by exploiting the wavelength domain and perform a broadcast-and-select to a destination card with minimum power dissipation. Scalability of both the physical layer and the overall power dissipation of the architecture is shown to be enhanced with respect to the existing interconnection network architectures based on space and wavelength domains. The space–time network architecture is scalable up to 216 ports with space-switches exhibiting energy efficiency of the order of picojoules per bit, thanks to the self-enabled semiconductor-optical-amplifier-based space-switches.

© 2011 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(200.6715) Optics in computing : Switching

ToC Category:
Optics in the Data Center

Original Manuscript: January 28, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 29, 2011
Published: June 20, 2011

Odile Liboiron-Ladouceur, Pier Giorgio Raponi, Nicola Andriolli, Isabella Cerutti, Mohammed Shafiqul Hai, and Piero Castoldi, "A Scalable Space–Time Multi-plane Optical Interconnection Network Using Energy-Efficient Enabling Technologies [Invited]," J. Opt. Commun. Netw. 3, A1-A11 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).
  2. L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003). [CrossRef]
  3. A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.
  4. L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007). [CrossRef]
  5. D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.
  6. Intel Xeon Processor Data Center Optimization and CERN openlabs, "Reducing data center energy consumption," Intel Xeon Processor White Paper Source should not be italic in PDF., 2008.
  7. K. G. Brill, "The invisible crisis in the data center: the economic meltdown of Moore’s law," White PaperSource should not be italic in PDF., Uptime Institute, 2007.
  8. J. Humphreys and J. Scaramella, "The impact of power and cooling on data center infrastructure," Market Research Report Source should not be italic in PDF., IDC, 2006.
  9. C. L. Belady, "In the data center, power and cooling costs more than the IT equipment it supports," Electronics Cooling (2007) [Online]. Available: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.
  10. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.
  11. Energy Star Program, Report to congress on server and data center energy efficiency: Public law 109-431, US Environmental Protection Agency, 2007.
  12. S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.
  13. J. G. Koomey, "Worldwide electricity used in data centers," Environ. Res. Lett. 3, (3), 1‒8 (2008). [CrossRef]
  14. D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, (7), 1166‒1185 (2009). [CrossRef]
  15. V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007). [CrossRef]
  16. D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.
  17. H. Cho, P. Kapur, and K. Saraswat, "Power comparison between high-speed electrical and optical interconnects for interchip communication," J. Lightwave Technol. 22, (9), 2021‒2033 (2004). [CrossRef]
  18. A. Benner, "Cost-effective optics: enabling the exascale roadmap," 17th IEEE Symp. on High Performance Interconnects (HOTI), Aug. 2009, pp. 133‒137.
  19. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, (6), 728‒749 (2000). [CrossRef]
  20. X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.
  21. R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011). [CrossRef]
  22. R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightwave Technol. 24, (12), 4655‒4673 (2006). [CrossRef]
  23. E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.
  24. R. Gaudino, G. Castillo, F. Neri, and J. Finochietto, "Can simple optical switching fabrics scale to terabit per second switch capacities?," J. Opt. Commun. Netw. 1, (3), B56‒B69 (2009). [CrossRef]
  25. P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010). [CrossRef]
  26. O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011). [CrossRef]
  27. T. Lin, K. Williams, R. Penty, I. White, and M. Glick, "Capacity scaling in a multihost wavelength-striped SOA-based switch fabric," J. Lightwave Technol. 25, (3), 655‒663 (2007). [CrossRef]
  28. R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, "Optical-packet-switched interconnect for supercomputer applications," J. Opt. Netw. 3, (12), 900‒913 (2004). [CrossRef]
  29. O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, "Low-power, transparent optical network interface for high bandwidth off-chip interconnects," Opt. Express 17, (8), 6550‒6561 (2009). [CrossRef] [PubMed]
  30. W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, San Francisco, CA, USA, 2003.
  31. M. Moller, "High-speed electronic circuits for 100 Gb/s transport networks," Optical Fiber Communication Conf. and Exhibit (OFC), Mar. 2010, OThC6.
  32. J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009). [CrossRef]
  33. J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.
  34. K. Jinguji and T. Yasui, "Synthesis of one-input M-output optical FIR lattice circuits," J. Lightwave Technol. 26, (7), 853‒866 (2008). [CrossRef]
  35. S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, "Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions," J. Lightwave Technol. 27, (1), 30‒40 (2009). [CrossRef]
  36. J. Ito and H. Tsuda, "Small bend structures using trenches filled with low-refractive index material for miniaturizing silica planar lightwave circuits," J. Lightwave Technol. 27, (6), 786‒790 (2009). [CrossRef]
  37. G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.
  38. C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002). [CrossRef]
  39. O. Liboiron-Ladouceur and K. Bergman, "Optimization of a switching node for optical multistage interconnection networks," IEEE Photon. Technol. Lett. 19, (20), 1658‒1660 (2007). [CrossRef]
  40. O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee, H. Wang, C. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, (13), 1777‒1789 (2008). [CrossRef]
  41. C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996). [CrossRef]
  42. E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006). [CrossRef]
  43. A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993). [CrossRef]
  44. S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009). [CrossRef]
  45. N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999). [CrossRef]
  46. H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010). [CrossRef]
  47. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.
  48. A. Albores-Mejia, F. Gomez-Agis, H. Dorren, X. Leijtens, T. de Vries, Y.-S. Oei, M. Heck, R. Notzel, D. Robbins, M. Smit, and K. Williams, "Monolithic multistage optoelectronic switch circuit routing 160 Gb/s line-rate data," J. Lightwave Technol. 28, (20), 2984‒2992 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited