OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 8 — Aug. 1, 2011
  • pp: A32–A39

Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]

A. Wonfor, H. Wang, R. V. Penty, and I. H. White  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 3, Issue 8, pp. A32-A39 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reviews advances in the technology of integrated semiconductor optical amplifier based photonic switch fabrics, with particular emphasis on their suitability for high performance network switches for use within a datacenter. The key requirements for large port count optical switch fabrics are addressed noting the need for switches with substantial port counts. The design options for a 16 × 16 port photonic switch fabric architecture are discussed and the choice of a Clos–tree design is described. The control strategy, based on arbitration and scheduling, for an integrated switch fabric is explained. The detailed design and fabrication of the switch is followed by experimental characterization, showing net optical gain and operation at 10 Gb/s with bit error rates lower than 1 0 9 . Finally improvements to the switch are suggested, which should result in 100 Gb/s per port operation at energy efficiencies of 3 pJ/bit.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(130.4815) Integrated optics : Optical switching devices
(060.6719) Fiber optics and optical communications : Switching, packet

ToC Category:
Optics in the Data Center

Original Manuscript: February 7, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: June 11, 2011
Published: July 13, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

A. Wonfor, H. Wang, R. V. Penty, and I. H. White, "Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]," J. Opt. Commun. Netw. 3, A32-A39 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Tucker, "Green optical communications—part II: energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011). [CrossRef]
  2. L. A. Barroso and U. Hölzle, "The datacenter as a computer: an introduction to the design of warehouse-scale machines," Synthesis Lectures on Computer Architecture, Morgan & Claypool, 2009.
  3. N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999). [CrossRef]
  4. D. K. Hunter, M. H. M. Nizam, M. C. Chia, I. Andonovic, K. M. Guild, A. Tzanakaki, M. J. O’Mahony, J. D. Bainbridge, M. F. C. Stephens, R. V. Penty, and I. H. White, "WASPNET: a wavelength switched packet network," IEEE Commun. Mag. 37, (3), 120‒129 (1999). [CrossRef]
  5. L. Dittmann, C. Develder, D. Chiaroni, F. Neri, F. Callegati, W. Koerber, A. Stavdas, M. Renaud, A. Rafel, J. Sole-Pareta, W. Cerroni, N. Leligou, L. Dembeck, B. Mortensen, M. Pickavet, N. Le Sauze, M. Mahony, B. Berde, and G. Eilenberger, "The European IST project DAVID: a viable approach toward optical packet switching," IEEE J. Sel. Areas Commun. 21, 1026‒1040 (2003). [CrossRef]
  6. V. A. Aksyuk, S. Arney, N. R. Basavanhally, D. J. Bishop, C. A. Bolle, C. C. Chang, R. Frahm, A. Gasparyan, J. V. Gates, R. George, C. R. Giles, J. Kim, P. R. Kolodner, T. M. Lee, D. T. Neilson, C. Nijander, C. J. Nuzman, M. Paczkowski, A. R. Papazian, F. Pardo, D. A. Ramsey, R. Ryf, R. E. Scotti, H. Shea, and M. E. Simon, "238×238 micromechanical optical cross connect," IEEE Photon. Technol. Lett. 15, 587‒589 (2003). [CrossRef]
  7. N. Xie, T. Hashimoto, and K. Utaka, "Ultimate-low-power-consumption, polarization-independent, and high-speed polymer Mach–Zehnder thermo-optic switch," OFC 2009, 22–26 Mar. 2009, pp. 1‒3.
  8. A. Zhang, K. T. Chan, M. S. Demokan, V. W. C. Chan, P. C. H. Chan, H. S. Kwok, and A. H. P. Chan, "Integrated liquid crystal optical switch based on total internal reflection," Appl. Phys. Lett. 86, (21), 211108 (2005). [CrossRef]
  9. P. J. Duthie and M. J. Wale, "16∗16 single chip optical switch array in lithium niobate," Electron. Lett. 27, (14), 1265‒1266 (1991). [CrossRef]
  10. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, "First 8∗8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers," Electron. Lett. 28, 441‒443 (1992). [CrossRef]
  11. J. E. Bowers, A. W. Fang, H. Park, R. Jones, O. Cohen, and M. J. Paniccia, "Hybrid silicon evanescent photonic integrated circuit technology," Conf. Lasers and Electro-Optics, 2007 (CLEO 2007), 6–11 May 2007, CTuQ1.
  12. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, "High speed silicon optical modulator with self aligned fabrication process," Opt. Express 18, 19064‒19069 (2010). [CrossRef]
  13. M. Lipson, "Compact electro-optic modulators on a silicon chip," IEEE J. Sel. Top. Quantum Electron. 12, 1520‒1526 (2006). [CrossRef]
  14. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, "CMOS-integrated optical receivers for on-chip interconnects," IEEE J. Sel. Top. Quantum Electron. 16, 1376‒1385 (2010). [CrossRef]
  15. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, "High-performance modulators and switches for silicon photonic networks-on-chip," IEEE J. Sel. Top. Quantum Electron. 16, (1), 6‒22 (2010). [CrossRef]
  16. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, "Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers," Photonics in Switching 2010 (PDIWI5), 25–28 July 2010.
  17. Q. Yang, K. Bergman, G. D. Hughes, and F. G. Johnson, "WDM packet routing for high-capacity data networks," J. Lightwave Technol. 19, (10), 1420‒1426 (2001). [CrossRef]
  18. A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, "A fully implemented 12×12 data vortex optical packet switching interconnection network," J. Lightwave Technol. 23, (10), 3066‒3075 (2005). [CrossRef]
  19. A. Shacham, B. G. Lee, and K. Bergman, "A wide-band nonblocking 2×2 switching node for a SPINet network," IEEE Photonics Technol. Lett. 17, 2742‒2744 (2005). [CrossRef]
  20. A. Shacham and K. Bergman, "Building ultralow-latency interconnection networks using photonic integration," IEEE Micro 27, 6‒20 (2007). [CrossRef]
  21. M. Glick, M. Dales, D. McAuley, T. Lin, K. Williams, R. Penty, and I. White, "SWIFT: a testbed with optically switched data paths for computing applications," ICTON 2005, Vol. 2, 3–7 July 2005, pp. 29‒32.
  22. E. T. Aw, T. Lin, A. Wonfor, M. Glick, K. A. Williams, R. V. Penty, and I. H. White, "Layered control to enable large scale SOA switch fabric," ECOC 2006, 24–28 Sept. 2006, pp. 1‒2.
  23. I. H. White, K. A. Williams, R. V. Penty, T. Lin, A. Wonfor, E. T. Aw, M. Glick, M. Dales, and D. McAuley, "Control architecture for high capacity multistage photonic switch circuits," J. Opt. Netw. 6, 180‒188 (2007). [CrossRef]
  24. M. Renaud, M. Bachmann, and M. Erman, "Semiconductor optical space switches," IEEE J. Sel. Top. Quantum Electron. 2, 277‒288 (1996). [CrossRef]
  25. I. H. White, J. J. S. Watts, J. E. Carroll, C. J. Armistead, D. J. Moole, and J. A. Champelovier, "InGaAsP 400 ∗ 200 µm active crosspoint switch operating at 1.5 µm using novel reflective Y-coupler components," Electron. Lett. 26, 617‒618 (1990). [CrossRef]
  26. A. Ajisawa, M. Fujiwara, J. Shimizu, M. Sugimoto, M. Uchida, and Y. Ohta, "Monolithically integrated optical gate 2×2 matrix switch using GaAs/AlGaAs multiple quantum well structure," Electron. Lett. 23, 1121‒1122 (1987). [CrossRef]
  27. J. D. Burton, P. J. Fiddyment, M. J. Robertson, and P. Sully, "Monolithic InGaAsP-InP laser amplifier gate switch matrix," IEEE J. Quantum Electron. 29, 2023‒2027 (1993). [CrossRef]
  28. M. Gustavsson, B. Lagerstrom, L. Thylen, M. Janson, L. Lundgren, A. C. Morner, M. Rask, and B. Stoltz, "Monolithically integrated 4∗4 InGaAsP/InP laser amplifier gate switch arrays," Electron. Lett. 28, 2223‒2225 (1992). [CrossRef]
  29. E. Almstrom, C. P. Larsen, L. Gillner, W. H. van Berlo, M. Gustavsson, and E. Berglind, "Experimental and analytical evaluation of packaged 4×4 InGaAsP/InP semiconductor optical amplifier gate switch matrices for optical networks," J. Lightwave Technol. 14, 996‒1004 (1996). [CrossRef]
  30. J.-H. Song, H.-S. Kim, E. D. Shim, J.-W. Park, and Y. S. Baek, "Monolithically integrated 4×4 InGaAsP/InP laser amplifier gate switch matrix based on buried ridge stripe waveguides," Jpn. J. Appl. Phys. 43, L18‒L20 (2004). [CrossRef]
  31. G. A. Fish, B. Mason, L. A. Coldren, and S. P. DenBaars, "Compact, 4×4 InGaAsP-InP optical crossconnect with a scaleable architecture," IEEE Photon. Technol. Lett. 10, 1256‒1258 (1998). [CrossRef]
  32. S. Yu, M. Owen, R. Varrazza, R. V. Penty, and I. H. White, "Demonstration of high-speed optical packet routing using vertical coupler crosspoint space switch array," Electron. Lett. 36, 556‒558 (2000). [CrossRef]
  33. R. Varrazza, I. B. Djordjevic, and S. Yu, "Active vertical-coupler-based optical crosspoint switch matrix for optical packet-switching applications," J. Lightwave Technol. 22, 2034‒2042 (2004). [CrossRef]
  34. F. Dorgeuiele, L. Noirie, J. P. Faure, A. Ambrosy, S. Rabaron, F. Boubal, M. Schilling, and C. Artigue, "1.28 Tbit/s throughput 8×8 optical switch based on arrays of gain-clamped semiconductor optical amplifier gates," Optical Fiber Communication Conf., Vol. 4, 2000, pp. 221‒223.
  35. Y. Kai, K. Sone, S. Yoshida, Y. Aoki, G. Nakagawa, and S. Kinoshita, "A compact and lossless 8×8 SOA gate switch subsystem for WDM optical packet interconnections," ECOC 2008, 21–25 Sept. 2008, pp. 1‒2.
  36. J. A. Summers, V. Lal, M. L. Masanovic, N. Dagli, and D. J. Blumenthal, "Concave low-loss total internal reflection mirrors in indium phosphide for high fabrication tolerance," Conf. Lasers and Electro-Optics, 2007 (CLEO 2007), 2007, pp. 1‒2.
  37. H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, "Demonstration of a lossless monolithic 16×16 QW SOA switch," ECOC’09 Post-deadline, 20–24 Sept. 2009, pp. 1‒2.
  38. E. T. Aw, A. Wonfor, M. Glick, R. V. Penty, and I. H. White, "An optimized non-blocking SOA switch architecture for high performance Tb/s network interconnects," Photonics in Switching, 2007, pp. 15‒16.
  39. E. Aw, A. Wonfor, M. Glick, R. Penty, and I. White, "Large dynamic range 32×32 optimized non-blocking SOA based switch for 2.56 Tb/s interconnect applications," 33rd European Conf. and Exhibition on Optical Communication (ECOC 2007), 2007, p. 2.
  40. R. P. Luijten and R. Grzybowski, "The OSMOSIS optical packet switch for supercomputers," OFC 2009, 22–26 Mar. 2009, OTuF3.
  41. http://europic.jeppix.eu/
  42. T. Lin, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, "Capacity scaling in a multihost wavelength-striped SOA-based switch fabric," J. Lightwave Technol. 25, 655‒663 (2007). [CrossRef]
  43. http://www.ciphotonics.com
  44. K. A. Williams, A. Albores-Mejia, T. de Vries, E. Smalbrugge, Y. S. Oei, M. K. Smit, and R. Notzel, "Scalable quantum dot based optical interconnects," OptoElectronics and Communications Conf., 2009 (OECC 2009), 2009, pp. 1‒2.
  45. E. T. Aw, H. Wang, M. G. Thompson, A. Wonfor, R. V. Penty, I. H. White, and A. R. Kovsh, "Uncooled 2×2 quantum dot semiconductor optical amplifier based switch," Lasers and Electro-Optics, 2008 and 2008 Conf. on Quantum Electronics and Laser Science (CLEO/QELS 2008), 2008, pp. 1‒2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited