OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 8 — Aug. 1, 2011
  • pp: A49–A58

Roadmapping ICT: An Absolute Energy Efficiency Metric

Michael C. Parker and Stuart D. Walker  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 8, pp. A49-A58 (2011)
http://dx.doi.org/10.1364/JOCN.3.000A49


View Full Text Article

Enhanced HTML    Acrobat PDF (308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an absolute energy efficiency metric (measured in dBε) that can be universally applied to any ICT system, subsystem and component. It shows what energy efficiency improvements are possible for any data processing/transmission/storage system. The metric’s versatility is also displayed by applying it to biologically based and quantum-level information systems. As an exemplar, we identify ten different and independent approaches, each of which on its own could achieve at least a 50% energy efficiency saving, so as to enable a thousand-fold (i.e., 30 dB) improvement in overall energy efficiency in photonic telecommunications networking.

© 2011 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Optics in the Data Center

History
Original Manuscript: January 31, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 20, 2011
Published: July 22, 2011

Citation
Michael C. Parker and Stuart D. Walker, "Roadmapping ICT: An Absolute Energy Efficiency Metric," J. Opt. Commun. Netw. 3, A49-A58 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-8-A49


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Pickavet, R. Van Caenegem, S. Demeyer, P. Audenaert, D. Colle, P. Demeester, R. Leppla, M. Jaeger, A. Gladisch, and H.-M. Foisel, "Energy footprint of ICT," BroadBand Europe Antwerp, 2007, Belgium, Tu1.1.
  2. S. D. Pohekar and M. Ramachandran, "Application of multi-criteria decision making to sustainable energy planning—A review," Renewable Sustainable Energy Rev. 8, (4), 365‒381 (2004). [CrossRef]
  3. L. Lin, N. B. Shroff, and R. Srikant, "Asymptotically optimal power-aware routing for multihop wireless networks with renewable energy sources," IEEE INFOCOM, Vol. 2, 2005, pp. 1262‒1272.
  4. X. Liu, P. Shenoy, and M. D. Corner, "Chameleon: Application-level power management," IEEE Trans. Mobile Comput. 7, (8), 995‒1010 (2008). [CrossRef]
  5. Energy Consumption Rating (ECR) Initiative, [Online]. Available: http://www.ecrinitiative.org
  6. www.greentouch.org
  7. R. S. Tucker, "Green optical communications—part I: Energy limitations in transport," IEEE J. Sel. Top. Quantum Electron. 17, (2), 245‒260 (2011). [CrossRef]
  8. R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011). [CrossRef]
  9. C. Lange, D. Kosiankowski, R. Weidmann, and A. Gladisch, "Energy consumption of telecommunication networks and related improvement options," IEEE J. Sel. Top. Quantum Electron. 17, (2), 285‒295 (2011). [CrossRef]
  10. X. Wang, W. Hou, L. Guo, J. Cao, and D. Jiang, "Energy saving and cost reduction in multi-granularity green optical networks," Comput. Netw. 55, (3), 807‒821 (2011). [CrossRef]
  11. F. Musumeci, M. Tornatore, and A. Pattavina, "A comprehensive energy-efficiency comparison for different optical transport architectures," Italian Networking Workshop, 2011, Cavalese, Italy.
  12. D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, (7), 1166‒1185 (2009). [CrossRef]
  13. S. Nishimura, K. Shinoda, Y. Lee, G. Ono, K. Fukuda, F. Yuki, T. Takemoto, H. Toyoda, M. Yamada, T. Shinji, and N. Ikeda, "Components and interconnection technologies for photonic-assisted routers toward green networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 347‒356 (2011). [CrossRef]
  14. M. C. Parker and S. D. Walker, "An absolute network energy efficiency metric," 1st Int. ICST Workshop on Green Grids (Green Grids 2009), 2009, Athens, Greece.
  15. S. J. Ben Yoo, "Energy efficiency in the future Internet the role of optical packet switching and optical label switching," IEEE J. Sel. Top. Quantum Electron. 17, (2), 406‒418 (2011). [CrossRef]
  16. R. S. Tucker, "Optical packet-switched WDM networks: A cost and energy perspective," Optical Fiber Communications (OFC’08), 2008, San Diego, OMG1.
  17. A. Gladisch, C. Lange, and R. Leppia, "Power efficiency of optical versus electronic access networks," European Conf. Optical Communications (ECOC’08), 2008, Brussels, Tu4A2.
  18. M. C. Parker and S. D. Walker, "Information transfer and Landauer’s principle," Opt. Commun. 229, 23‒27 (2004). [CrossRef]
  19. C. Belady, A. Rawson, J. Pfleuger, and T. Cader, "Grid data center power efficiency metrics: PUE and DCiE," 2008, White Paper [Online]. Available: http://www.thegreengrid.org
  20. M. C. Parker and S. D. Walker, "Differential temperature Carnot heat analysis shows that computing machines are thermodynamically irreversible," Opt. Commun. 281, 3440‒3446 (2008). [CrossRef]
  21. M. C. Parker and S. D. Walker, "Is computation reversible?," Opt. Commun. 271, 274‒277 (2007). [CrossRef]
  22. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements, Springer, Berlin, 2000.
  23. http://www.jdsu.com/product-literature/ph1_ds_cms_ae.pdf
  24. J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. S. Tucker, "Energy consumption in optical IP networks," J. Lightwave Technol. 27, (13), 2391‒2403 (2009). [CrossRef]
  25. C. Tuppen, "Climate change: Everyone’s business," Conf. Information and Communication Technologies for Energy Efficiency, 2008, European Commission, Brussels, Belgium.
  26. S. E. M. Dudley, T. J. Quinlan, I. Henning, S. D. Walker, R. P. Davey, A. D. Wallace, I. Boyd, and D. B. Payne, "Low-power optical feeder for VDSL over twisted pair for last mile access networks," J. Lightwave Technol. 24, 65‒70 (2006). [CrossRef]
  27. M. N. Islam, Raman Amplifiers for Telecommunications: Sub-systems and Systems, Springer, New York, 2004.
  28. J. R. Barry and E. A. Lee, "Performance of coherent optical receivers," Proc. IEEE 78, (8), 1369‒1394 (1990). [CrossRef]
  29. B. Pakkenberg and H. J. G. Gundersen, "Neocortical neuron number in humans: Effect of sex and age," J. Comp. Neurol. 384, 312‒320 (1997). [CrossRef]
  30. The Green500 List, 2008, [Online]. Available: http://www.green500.org/lists/2008/11/top/list.php
  31. http://www.dell.com
  32. P. J. Winzer and R.-J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," J. Lightwave Technol. 24, 4711‒4728 (2006). [CrossRef]
  33. K. Higuma and J. Ichikawa, "High-speed optical DQPSK and FSK modulation using integrated Mach–Zehnder interferometers," Opt. Express 14, 4469‒4478 (2006). [CrossRef]
  34. P. E. Ross, "5 Commandments [technology laws and rules of thumb]," IEEE Spectrum 12, 30‒35 (2003).
  35. Secretary of State’s Second Report to Parliament on Security of Gas and Electricity Supply in Great Britain, 2006
  36. G. Shen and R. S. Tucker, "Energy-minimized design for IP over WDM networks," J. Opt. Commun. Netw. 1, (1), 176‒186 (2009). [CrossRef]
  37. W. Van Heddeghem, M. De Groote, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, "Energy-efficiency in telecommunications networks: Link-by-link versus end-to-end grooming," ONDM 2010, 2010, Kyoto, Japan.
  38. C. Lange, D. Kosiankowski, C. Gerlach, F. Westphal, and A. Gladisch, "Energy consumption of telecommunication networks," ECOC 2010, 2009, Vienna, Austria, 5.5.3.
  39. B. Wang, A. Monti, and M. Riva, "A high-speed H-bridge circuit based on GaN HFETs and custom resonant gate drivers," IEEE Energy Conversion Congr. and Expo., 2009, pp. 973‒978.
  40. http://www.google.com/corporate/green/datacenters/measuring.html
  41. N. Gershenfeld, The Physics of Information Technology, Cambridge Univ. Press, 2000, ch. 13.
  42. R. E. Schuh, P. Eneroth, and P. Karlsson, "Multi-standard mobile terminals," Proc. IST Mobile & Wireless Telecommunications Summit’02, 2002, pp. 174‒178.
  43. K. Pentikousis, "In search of energy-efficient mobile networking," IEEE Commun. Mag. 48, (1), 95‒103 (2010). [CrossRef]
  44. K. Kuusilinna, "The mobile fight: software versus power," [Online]. Available: http://www.imec.be/SE4ES/DATE08/DATE08-files/DATE08-SE4ES-Nokia-Kuusilinna.pdf
  45. B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, "Power reduction techniques in multilayer traffic engineering," Proc. 11th Int. Conf. Transparent Optical Networks (ICTON 2009), 2009, Sao Miguel, Azores, Portugal.
  46. S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic Internet," J. Lightwave Technol. 24, 4468‒4492 (2006). [CrossRef]
  47. E. Desurvire, Erbium-Doped Fiber Amplifiers, John Wiley & Sons, 1994.
  48. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals," Optical Fiber Communication Conf. (OFC’07), 2007, PDP19.
  49. R. S. Tucker, "Optical packet switching: A reality check," Opt. Switching Networking 5, 2‒9 (2009). [CrossRef]
  50. K. Vlachos, C. Raffaelli, S. Aleksic, N. Andriolli, D. Apostolopoulos, H. Avramopoulos, D. Erasme, D. Klonidis, M. N. Peterson, M. Scaffardi, K. Schulze, M. Spiropoulou, S. Sygletos, I. Tomkos, C. Vazquez, O. Zouraraki, and F. Neri, "Photonics in switching: Enabling technologies and subsystem design," J. Opt. Netw. 8, (5), 404‒428 (2009). [CrossRef]
  51. X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, "All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA," Electron. Lett. 43, (16), 890‒892 (2007). [CrossRef]
  52. W. Vereecken, W. Van Heddeghem, B. Puype, D. Colle, M. Pickavet, and P. Demeester, "Optical networks: How much power do they consume and how can we optimize this?," European Conf. Optical Communications (ECOC’10), 2010, Turin, Mo1D1.
  53. W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre," Electron. Lett. 43, (3), 183‒5 (2007). [CrossRef]
  54. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, "Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission," J. Lightwave Technol. 26, 64‒72 (2008). [CrossRef]
  55. M. C. Parker and S. D. Walker, "Multiple order adaptive dispersion compensation using polynomially-chirped grating devices," Appl. Phys. B: Lasers Opt. 73, (5/6), 635‒645 (2001).
  56. M. C. Parker, E. Rochat, and S. D. Walker, "All-order PMD compensation using filter theory interpretation of Poincaré sphere trajectories," OFC 2002, 2002, Anaheim, CA.
  57. C. R. Doerr and K. Okamoto, "Advances in silica planar lightwave circuits," J. Lightwave Technol. 24, (12), 4763‒4789 (2006). [CrossRef]
  58. J. M. Senior, Optical Fiber Communications: Principles and Practice, 2nd ed., Prentice Hall, 1992.
  59. E. Rochat, S. D. Walker, and M. C. Parker, "C-band polarisation orthogonality preservation in 5 Gb/s, 50 µm multimode fibre links up to 3 km," Opt. Express 11, (6), 507‒514 (2003). [CrossRef]
  60. E. Rochat, S. D. Walker, and M. C. Parker, "Polarisation and wavelength division multiplexing at 1.55 µm for bandwidth enhancement of multimode fibre based access networks," Opt. Express 12, (10), 2280‒2292 (2004). [CrossRef]
  61. I. Tsalamanis, E. Rochat, M. C. Parker, and S. D. Walker, "Effect of polarization dependent loss and temperature fluctuations on degree of orthogonality in polarization multiplexed arrayed waveguide grating based networks," IEEE J. Quantum Electron. 41, 945‒950 (2005). [CrossRef]
  62. M. S. Bhatt, "Mapping of general combined heat and power systems," Energy Convers. Manage. 42, 115‒124 (2001). [CrossRef]
  63. U.S. Climate Change Technology Program—Technology Options for the Near and Long Term, 2003, [Online]. Available: http://www.climatetechnology.gov/library/2003/tech-options/index.htm
  64. M. Broccardo, P. Girdinio, E. Martino, S. Moccia, M. Nervi, A. Pini Prato, and M. Repetto, "Modular small-CHP plants optimized design as a way to reduce CO2 emissions," Int. Conf. Clean Electrical Power (ICCEP 09), 2009, Capri, Italy.
  65. E. Hau, Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer, 2006.
  66. M. A. Green, Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost, Springer-Verlag, Berlin, 2003.
  67. M. Vazquez, C. Quiaones, and M. Rascon, "Procedure to select the optimised power architecture for a telecommunications network of remote units," 21st Int. Telecommunications Energy Conf. (INTELEC ’99), 1999.
  68. D. W. Reeve, DC Power System Design for Telecommunications, John Wiley and Sons, 2007.
  69. J. H. Horlock, Cogeneration—Combined Heat and Power, Krieger, Malabar, FL, 1997.
  70. E. Minciuca, O. Le Corre, V. Athanasovicib, and M. Tazerouta, "Fuel savings and CO2 emissions for tri-generation systems," Appl. Therm. Eng. 23, (11), 1333‒1346 (2003).
  71. M. C. Parker, S. Nagraj, and S. D. Walker, "Networked carbon footprint resource allocation optimisation using open shortest path first algorithm," Int. Conf. Clean Electrical Power (ICCEP 09), 2009, Capri, Italy.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited