OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 9 — Sep. 1, 2011
  • pp: 683–691

Distributed SNIR Optimization Based on the Verhulst Model in Optical Code Path Routed Networks With Physical Constraints

Fábio Renan Durand and Taufik Abrão  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 9, pp. 683-691 (2011)
http://dx.doi.org/10.1364/JOCN.3.000683


View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the performance of a distributed power control algorithm (DPCA), based on the Verhulst model for signal-to-noise plus interference ratio (SNIR) optimization in optical code path (OCP) routed networks, was investigated. These networks rest on 2-D codes (time/wavelength) to establish the OCP. The DPCA can be effectively implemented in each node because it uses only local parameters. The SNIR model considers multiple-access interference, amplified spontaneous emission at cascaded amplified spans, group velocity dispersion, and polarization mode dispersion. Numerical results have shown SNIR convergence at power penalties of 7.94 and 11.51 dB for 2.5 and 10 Gbps, respectively. These results could be utilized for adjustment of either the transmitted power to a transmitter node or the gain to dynamic intermediary amplifiers.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Research Papers

History
Original Manuscript: February 28, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 15, 2011
Published: August 23, 2011

Citation
Fábio Renan Durand and Taufik Abrão, "Distributed SNIR Optimization Based on the Verhulst Model in Optical Code Path Routed Networks With Physical Constraints," J. Opt. Commun. Netw. 3, 683-691 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-9-683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice Hall, New York, USA, 2002.
  2. K. Kitayama and M. Murata, "Versatile optical code-based MPLS for circuit, burst and packet switching," J. Lightwave Technol. 21, (11), 2573‒2764 (2003). [CrossRef]
  3. E. Mutafungwa, "Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks," Photon. Netw. Commun. 13, 53‒66 (2007). [CrossRef]
  4. S. Huang, K. Baba, M. Murata, and K. Kitayama, "Variable-bandwidth optical paths: comparison between optical code-labeled path and OCDM path," J. Lightwave Technol. 24, (10), 3563‒3573 (2006). [CrossRef]
  5. H. Beyranvand and J. Salehi, "All-optical multiservice path switching in optical code switched GMPLS core network," J. Lightwave Technol. 27, (17), 2001‒2012 (2009). [CrossRef]
  6. K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007). [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2002.
  8. F. Forghieri, R. W. Tkach, and R. L. Favin, "Simple model of optical amplifier chains to evaluate penalties in WDM systems," J. Lightwave Technol. 16, (9), 1570‒1576 (1998). [CrossRef]
  9. L. Pavel, "OSNR optimization in optical networks: Modeling and distributed algorithms via a central cost approach," IEEE J. Sel. Areas Commun. 24, (4), 54‒65 (2006). [CrossRef]
  10. G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008). [CrossRef]
  11. N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).
  12. N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006). [CrossRef]
  13. E. Inaty, H. Shalaby, P. Fortie, and L. Rusch, "Optical fast frequency hopping CDMA system using power control," J. Lightwave Technol. 20, (2), 166‒177 (2003). [CrossRef]
  14. G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993). [CrossRef]
  15. W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009). [CrossRef]
  16. C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008). [CrossRef]
  17. S. Khaleghi and M. Reza Pakravan, "Quality of service provisioning in optical CDMA packet networks," J. Opt. Commun. Netw. 2, (5), 283‒292 (2010). [CrossRef]
  18. H. Yashima and T. Kobayashi, "Optical CDMA with time hopping and power control for multirate networks," J. Lightwave Technol. 21, 695‒702 (2003). [CrossRef]
  19. T. Miyazawa and I. Sasase, "Multirate and multiquality transmission scheme using adaptive overlapping pulse-position modulator and power controller in optical CDMA networks," 12th IEEE Int. Conf. on Networks (ICON), Vol. 1, Nov. 2004, pp. 127‒131.
  20. R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007). [CrossRef]
  21. E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).
  22. F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010). [CrossRef]
  23. P. F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement," Correspondance mathématique et physique 10, 113‒121 (1838).
  24. C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007). [CrossRef]
  25. C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005). [CrossRef]
  26. Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007). [CrossRef]
  27. G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Boston, MA, 2002.
  28. F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010). [CrossRef]
  29. T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011). [CrossRef]
  30. B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003). [CrossRef]
  31. Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009). [CrossRef]
  32. F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005). [CrossRef]
  33. A. L. Sanches, J. V. dos Reis Jr., and B.-H. V. Borges, "Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques," J. Lightwave Technol. 27, (22), 5134‒5144 (2009). [CrossRef]
  34. E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002). [CrossRef]
  35. R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007). [CrossRef]
  36. C. Zuo, W. Ma, H. Pu, and J. Lin, "The impact of group velocity on frequency-hopping optical code division multiple access system," J. Lightwave Technol. 19, (10), 1416‒1419 (2001). [CrossRef]
  37. S. Huang, K. Baba, M. Murata, and K. Kitayama, "Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing," J. Opt. Netw. 5, (12), 1028‒1042 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited