OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 9 — Sep. 1, 2011
  • pp: 767–779

Anycast Routing for Survivable Optical Grids: Scalable Solution Methods and the Impact of Relocation

Ali Shaikh, Jens Buysse, Brigitte Jaumard, and Chris Develder  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 9, pp. 767-779 (2011)
http://dx.doi.org/10.1364/JOCN.3.000767


View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we address the issue of resiliency against single link network failures in optical grids and show how the anycast routing principle, which is typical of grids, can be exploited in providing efficient shared path protection. We investigate two different integer linear program models for the full anycast routing problem, deciding on the primary and backup server locations as well as on the lightpaths toward them. The first model is a classical integer linear programming (ILP) model, which lacks scalability. The second model is a large-scale optimization model which can be efficiently solved using column generation techniques. We also design two new heuristics: the first one is an improvement of a previously proposed one which, although providing near optimal solutions, lacks scalability, while the second one is highly scalable, at the expense of reduced accuracy. Numerical results are presented for three mesh networks with varying node degrees. They allow an illustration of the scalability of the newly proposed approaches. Apart from highlighting the difference in performance (i.e., scalability and optimality) among the algorithms, our case studies demonstrate the bandwidth savings that can be achieved by exploiting relocation rather than using a backup path to the original (failure-free) destination site. Numerical results for varying network topologies, as well as different numbers of server sites show that relocation allows bandwidth savings in the range of 7–21%.

© 2011 OSA

OCIS Codes
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Research Papers

History
Original Manuscript: March 7, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 26, 2011
Published: August 31, 2011

Citation
Ali Shaikh, Jens Buysse, Brigitte Jaumard, and Chris Develder, "Anycast Routing for Survivable Optical Grids: Scalable Solution Methods and the Impact of Relocation," J. Opt. Commun. Netw. 3, 767-779 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-9-767

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited