OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 10 — Oct. 1, 2012
  • pp: 760–768

Rate-Adaptive Modulation and Low-Density Parity-Check Coding for Optical Fiber Transmission Systems

Gwang-Hyun Gho and Joseph M. Kahn  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 10, pp. 760-768 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a rate-adaptive optical transmission scheme using variable-size constellations at a fixed symbol rate and variable-rate forward error correction (FEC) codes with soft-decision decoding (SDD), quantifying how achievable bit rates vary with transmission distance. The scheme uses outer Reed–Solomon codes and inner extended irregular repeat-accumulate low-density parity-check (LDPC) codes to vary the code rate, combined with single-carrier polarization-multiplexed M-ary quadrature amplitude modulation with variable M and digital coherent detection. LDPC codes are decoded iteratively using belief propagation. Employing M = 4 , 8 , 16 , the scheme achieves a maximum bit rate of 200 Gbit/s in a nominal 50-GHz channel bandwidth. A rate adaptation algorithm uses the signal-to-noise ratio (SNR) or the FEC decoder input bit-error ratio (BER) estimated by a receiver to determine the FEC code rate and constellation size that maximize the information bit rate while yielding a target FEC decoder output BER and a specified SNR margin. We simulate single-channel transmission through long-haul fiber systems with or without inline chromatic dispersion compensation, incorporating numerous optical switches, evaluating the impact of fiber nonlinearity and bandwidth narrowing. With zero SNR margin, we achieve bit rates of 200/100/50/20 Gbit/s over distances of 960/2800/4400/9680 km and 1920/4960/8160/19,360 km in dispersion-compensated and -uncompensated systems, respectively, corresponding to an increase of about 50% in reach compared to a reference system that uses a hard-decision FEC scheme. Compared to an ideal coding scheme, the proposed scheme exhibits a performance gap ranging from about 4.0 dB at 960 km to 2.7 dB at 9680 km in compensated systems, and from about 3.9 dB at 1920 km to 2.9 dB at 19,360 km in uncompensated systems. Observed performance gaps are about 2.5 dB smaller than for the reference hard-decision FEC scheme, close to the improvement expected when using SDD.

© 2012 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications

ToC Category:
Research Papers

Original Manuscript: May 17, 2012
Revised Manuscript: July 29, 2012
Manuscript Accepted: August 14, 2012
Published: September 20, 2012

Gwang-Hyun Gho and Joseph M. Kahn, "Rate-Adaptive Modulation and Low-Density Parity-Check Coding for Optical Fiber Transmission Systems," J. Opt. Commun. Netw. 4, 760-768 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag., vol. 50, pp. 12–20, Feb.2012. [CrossRef]
  2. G. Gho, L. Klak, and J. M. Kahn, “Rate-adaptive coding for optical fiber transmission systems,” J. Lightwave Technol., vol. 29, no. 2, pp. 222–233, Jan.2011. [CrossRef]
  3. G. Gho and J. M. Kahn, “Rate-adaptive modulation and coding for optical fiber transmission systems,” J. Lightwave Technol., vol. 30, no. 12, pp. 1818–1828, June2012. [CrossRef]
  4. T. Mizuochi, “Next generation FEC for optical communication,” in Opt. Fiber Commun. Conf., San Diego, CA, Feb. 2008.
  5. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 2, pp. 376–386, Mar./Apr.2004. [CrossRef]
  6. B. Vasic and I. Djordjevic, “Low-density parity-check codes for long-haul optical communication systems,” IEEE Photon. Technol. Lett., vol. 14, pp. 1208–1210, Aug.2002. [CrossRef]
  7. M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Nonbinary LDPC-coded modulation for rate-adaptive optical fiber communication without bandwidth expansion,” IEEE Photon. Technol. Lett., vol. 24, pp. 1402–1404, Aug.2012. [CrossRef]
  8. ETSI EN 302 307 V1.2.1, Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications (DVB-S2), Aug.2009.
  9. Y. Miyata, W. Matsumoto, H. Yoshida, and T. Mizuochi, “Efficient FEC for optical communications using concatenated codes to combat error-floor,” in Optical Fiber Communication Conf./Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.
  10. P. K. Vitthaladevuni, M.-S. Alouini, and J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 3039–3050, Nov.2005. [CrossRef]
  11. R. G. Gallager, Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.
  12. T. Richardson, “Error floors of LDPC codes,” in Proc. of the Allerton Conf. on Communications, Control, and Computing, Monticello, IL, Oct. 1–3, 2003.
  13. S. B. Wicker, Error Control Systems for Digital Communication and Storage. Prentice Hall, Englewood Cliffs, NJ, 1995.
  14. M. Yang and W. E. Ryan, “Lowering the error-rate floors of moderate-length high-rate irregular LDPC codes,” in IEEE Int. Symp. on Information Theory, Yokohama, Japan, June 2003.
  15. D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, Mar.1999. [CrossRef]
  16. J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. IT-50, pp. 2824–2836, Nov.2004. [CrossRef]
  17. T. Tian, C. Jones, and J. D. Villasenor, “Rate-compatible low-density parity-check codes,” in Proc. of IEEE Int. Symp. on Information Theory, Chicago, IL, June 2004.
  18. J. Li and K. R. Narayanan, “Rate-compatible low-density parity-check codes for capacity-approaching ARQ schemes in packet data communications,” in Proc. of Int. Conf. Communications, Internet, and Information Technology, St. Thomas, Virgin Islands, USA, Nov. 2002, pp. 201–206.
  19. G. Yue, X. Wang, and M. Madihian, “Design of rate-compatible irregular repeat accumulate codes,” IEEE Trans. Commun., vol. 55, no. 6, pp. 1153–1163, June2007. [CrossRef]
  20. ITU-T G.975, Forward Error Correction for Submarine Systems, Nov.1996.
  21. G. D. Forney, “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, pp. 281–300, Mar.1992. [CrossRef]
  22. A. R. Calderbank and L. H. Ozarow, “Nonequiprobable signaling on the Gaussian channel,” IEEE Trans. Inf. Theory, vol. 36, pp. 726–740, July1990. [CrossRef]
  23. G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May1998. [CrossRef]
  24. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol., vol. 25, no. 8, pp. 2033–2043, Aug.2007. [CrossRef]
  25. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol., vol. 21, no. 1, pp. 61–68, Jan.2003. [CrossRef]
  26. M. Arabaci, I. B. Djordjevic, T. Schmidt, R. Saunders, and R. M. Marcoccia, “Rate-adaptive nonbinary-LDPC-coded modulation with backpropagation for long-haul optical transport networks,” in Int. Conf. on Transparent Optical Networks, Munich, Germany, June 27–July 1, 2010, We.D1.5.
  27. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol., vol. 28, no. 4, pp. 662–701, Feb.2010. [CrossRef]
  28. S. Benedetto and G. Bosco, “Channel coding for optical communications,” in Optical Communication: Theory and Techniques. E. Forestieri, Ed., Springer, New York, 2005, pp. 63–78, ch. 8.
  29. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15718–15727, Sept.2008. [CrossRef] [PubMed]
  30. J. P. Wilde, G. W. Yoffe, and J. M. Kahn, “Frequency noise characterization of a widely tunable narrow-linewidth DFB laser array source,” in Optical Fiber Communications Conf., San Diego, CA, Mar. 22–26, 2009.
  31. E. Ip and J. M. Kahn, “Feed-forward carrier recovery for coherent optical communications,” J. Lightwave Technol., vol. 25, no. 9, pp. 2675–2692, Sept.2007. [CrossRef]
  32. E. Ip and J. Kahn, “Addendum to feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol., vol. 27, no. 13, pp. 2552–2553, July2009. [CrossRef]
  33. R. Zarubica, R. Hinton, S. G. Wilson, and E. K. Hall, “Efficient quantization schemes for LDPC decoders,” in Proc. of the IEEE Military Communications Conf., San Diego, CA, Nov.2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited