OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 11 — Nov. 1, 2012
  • pp: 895–905

Network Energy Efficiency Gains Through Coordinated Cross-Layer Aggregation and Bypass

Michael Z. Feng, Kerry Hinton, Robert Ayre, and Rodney S. Tucker  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 11, pp. 895-905 (2012)
http://dx.doi.org/10.1364/JOCN.4.000895


View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the continuous growth of traffic in Internet Protocol (IP) networks, the issue of energy consumption in these networks has been growing in importance. “Next-generation networks” have been predicted as having a potential to reduce energy consumption of packet switched IP networks; however, these predictions have generally not been quantified. This paper provides a demonstration of how these energy savings could be achieved, through architectures including the appropriate application of both circuit switching and packet switching network layers. In this paper, we show that energy savings of around 70% could be achieved through a coordinated cross-layer aggregation and bypass process which can be conveniently implemented by network technologies such as automatically switched optical networks, and generalized multi-protocol label switching, compared to a network using full IP routing at each node.

© 2012 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Regular Papers

History
Original Manuscript: April 11, 2012
Revised Manuscript: September 12, 2012
Manuscript Accepted: September 13, 2012
Published: October 31, 2012

Citation
Michael Z. Feng, Kerry Hinton, Robert Ayre, and Rodney S. Tucker, "Network Energy Efficiency Gains Through Coordinated Cross-Layer Aggregation and Bypass," J. Opt. Commun. Netw. 4, 895-905 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-11-895


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. ITU-T, “Next Generation Networks—Frameworks and functional architecture models,” Y.2001, Dec.2004.
  2. N. Ghani, L. Qing, A. Gumaste, J. Lankford, A. Shami, C. Assi, A. Khalil, and D. Benhaddou, “Value-added services in next-generation SONET/SDH networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 64–73, Nov.2008. [CrossRef]
  3. ITU-T, “Interfaces for the Optical Transport Network (OTN),” G.709, Oct.2009.
  4. S. Dixit, IP over WDM: Building the Next Generation Optical Internet. Wiley, Feb.2003.
  5. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol., vol. 26, no. 9, pp. 1104–1118, May2008. [CrossRef]
  6. A. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol., vol. 24, no. 9, pp. 3303–3321, Sept.2006. [CrossRef]
  7. A. Chiu, G. Choudhury, G. Clapp, B. Doverspike, J. Gannett, J. Klincewicz, G. Ligli, R. Skoog, J. Strand, A. Von Lehmen, and D. Xu, “Network design and architectures for highly-dynamic next-generation IP-over-optical long distance networks,” J. Lightwave Technol., vol. 27, no. 12, pp. 1878–1890, June2009. [CrossRef]
  8. A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag., vol. 49, no. 1, pp. 126–132, Jan.2011. [CrossRef]
  9. Cisco, “Converge IP and DWDM layers in the core network,” White Paper, June2007.
  10. Juniper, “OTN interfaces for IP over DWDM,” White Paper, Apr.2010.
  11. J. Baliga, K. Hinton, R. Ayre, W. V. Sorin, and R. S. Tucker, “Energy consumption in optical IP networks,” J. Lightwave Technol., vol. 27, no. 13, pp. 2391–2403, July2009. [CrossRef]
  12. O. Tamm, C. Hermsmeyer, and A. Rush, “Eco-sustainable system and network architectures for future transport networks,” Bell Labs Tech. J., vol. 14, no. 4, pp. 311–327, Feb.2010. [CrossRef]
  13. G. Eilenberger, S. Bunse, L. Dembeck, U. Gebhard, F. Ilchmann, W. Lautenschlaeger, and J. Milbrandt, “Energy-efficient transport for the future Internet,” Bell Labs Tech. J., vol. 15, no. 2, pp. 147–167, Sept.2010. [CrossRef]
  14. H. S. Matthews, “Planning energy efficiency and eco sustainable telecommunications networks,” Bell Labs Tech. J., vol. 15, no. 1, pp. 147–167, June2010. [CrossRef]
  15. D. Kilper, G. Atkinson, S. K. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communications networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar./Apr.2011. [CrossRef]
  16. K. Hinton, J. Baliga, M. Z. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, Mar./Apr.2011. [CrossRef]
  17. W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, and P. Demeester, “Power consumption in telecommunication networks: Overview and reduction strategies,” IEEE Commun. Mag., vol. 49, no. 6, pp. 62–69, June2011. [CrossRef]
  18. ITU-T, “Architecture for the automatically switched optical networks (ASON),” G.8080, June2006.
  19. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, Oct.2004.
  20. A. Banerjee, J. Drake, J. P. Lang, B. Turner, K. Kompella, and Y. Rekhter, “Generalized multiprotocol label switching: An overview of routing and management enhancements,” IEEE Commun. Mag., vol. 39, no. 1, pp. 144–150, Jan.2001.
  21. Q. Song, Z. Li, I. Habib, and W. Alanqar, “Value-added proposition of the GMPLS control plane in IP optical networks,” J. Opt. Netw., vol. 4, no. 2, pp. 838–855, Dec.2005. [CrossRef]
  22. R. Chahine, A. Kirstadter, A. Iselt, and S. Pasqualini, “Operational cost reduction using ASON/ASTN,” in Optical Fiber Communications Conf., Anaheim, Mar. 2005.
  23. S. Pasqualini, A. Kirstadter, A. Iselt, R. Chahine, S. Verbrugge, D. Colle, M. Pickavet, and P. Demeester, “Influence of GMPLS on network providers’ operational expenditures: A quantitative study,” IEEE Commun. Mag., vol. 43, no. 7, pp. 28–38, July2005. [CrossRef]
  24. S. Verbrugge, S. Pasqualini, F. J. Westphal, M. Jager, A. Iselt, A. Kirstadter, R. Chahine, D. Colle, M. Pickavet, and P. Demeester, “Modelling operational expenditures for telecom operators,” in Conf. on Optical Networks Design & Modelling, Milan, Feb. 2005.
  25. R. Parthiban, R. S. Tucker, and C. Leckie, “Waveband grooming and IP aggregation in optical networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2476–2488, Nov.2003. [CrossRef]
  26. J. M. Simmons, Optical Network Design and Planning. Springer, June2008.
  27. F. Vismara, V. Grkovic, F. Musumeci, M. Tornatore, and S. Bregni, “On the energy efficiency of IP-over-WDM networks,” in IEEE Latin-American Conf. on Communications (LATINCOM), 15–17 Sept. 2010, pp. 1–6.
  28. W. Van Heddeghem, M. De Groote, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Energy-efficiency in telecommunications networks: Link-by-link versus end-to-end grooming, (invited),” in Proc. of 14th Conf. on Optical Network Design and Modeling (ONDM), Feb. 2010, pp. 1–6.
  29. Y. Zhang, M. Tornatore, P. Chowdhury, and B. Mukherjee, “Energy optimization in IP-over-WDM networks,” Opt. Switching Netw., vol. 8, no. 3, pp. 171–180, July2011. [CrossRef]
  30. L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications Workshops (INFOCOM), Workshop on Green Communications and Networking, Apr. 2011, pp. 349–354.
  31. M. Caria, M. Chamania, and A. Jukan, “A comparative performance study of load adaptive energy saving schemes for IP-over-WDM networks,” J. Opt. Commun. Netw., vol. 4, no. 3, pp. 152–164, Mar.2012. [CrossRef]
  32. S. Aleksic, “Analysis of power consumption in future high-capacity network nodes,” J. Opt. Commun. Netw., vol. 1, no. 3, pp. 245–258, Aug.2009. [CrossRef]
  33. M. Fiorani, M. Casoni, and S. Aleksic, “Analysis of a GMPLS enabled hybrid optical switching network,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Apr. 2012, pp. 1–6.
  34. K. Guan, D. C. Kilper, and G. Atkinson, “Evaluating the energy benefit of dynamic optical bypass for content delivery,” in IEEE Conf. on Computer Communications Workshops (INFOCOM), Workshop on Green Communications and Networking, Apr. 2011, pp. 313–318.
  35. P. Wiatr, P. Monti, and L. Wosinska, “Power savings versus network performance in dynamically provisioned WDM networks,” IEEE Commun. Mag., vol. 50, no. 5, pp. 48–55, May2012. [CrossRef]
  36. S. V. Kartalopoulos, Understanding SONET/SDH and ATM: Communications Networks for the Next Millennium. Wiley-IEEE Press, Apr.1999.
  37. J. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann, Aug.2004.
  38. Internet Engineering Task Force, “OSPF extensions in support of generalized multi-protocol label switching (GMPLS),” RFC-4203, Oct.2005.
  39. Internet Engineering Task Force, “Evaluation of existing routing protocols against automatically switched optical network (ASON) routing requirements,” RFC-4652, Oct.2006.
  40. A. W. Moore, “Measurement-based management of network resources,” Ph.D. thesis, University of Cambridge, Apr.2002.
  41. A. Odlyzko, “Data networks are lightly utilized and will stay that way,” Rev. Netw. Econom., vol. 2, no. 3, pp. 210–237, Sept.2003.
  42. Internet Engineering Task Force, “Routing extensions in support of generalized multi-protocol label switching (GMPLS),” RFC-4202, Oct.2005.
  43. K. Chandra, “Statistical multiplexing,” in Wiley Encyclopaedia of Telecommunications. John Wiley and Sons Inc., 2003.
  44. A. Alimian, B. Nordman, and D. Kharitonov, “Network and Telecom Equipment—Energy and Performance Assessment,” ECR Initiative, Dec.2010.
  45. Cisco Data Sheets [Online]. Available: http://www.cisco.com.
  46. Infinera Data Sheets [Online]. Available: http://www.infinera.com.
  47. Calient Data Sheets [Online]. Available: http://www.calient.net.
  48. Transmode Data Sheets [Online]. Available: http://www.transmode.com.
  49. Juniper Data Sheets [Online]. Available: http://www.juniper.net.
  50. Infinera Optical Line Amplifier Data Sheets [Online]. Available: http://www.infinera.com.
  51. D. Mills and H. Braun, “The NSFNET backbone network,” in Proc. of SIGCOMM ’87 Workshop on Frontiers in Computer Communications Technology, Vermont, Aug. 1987, pp. 191–196.
  52. R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet packet size distributions: Some observations,” Tech. Rep. ISI-TR-2007-643, USC/Information Sciences Institute, May2007.
  53. W. John and S. Tafvelin, “Analysis of Internet backbone traffic and header anomalies observed,” in SIGCOMM Conf. on Internet Measurement, San Diego, Aug. 2007.
  54. Cooperative Association for Internet Data Analysis Research, “Packet size distribution comparison between internet links in 1998 and 2008,” Mar.2008.
  55. T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary Poisson view of Internet traffic,” in Proc. of INFOCOM, Mar. 2004, vol. 3, pp. 1558–1569.
  56. G. Terdik and T. Gyires, “Does the Internet still demonstrate fractal nature,” in Int. Conf. on Networks, Guadeloupe, May 2009, pp. 30–34.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited