OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 12 — Dec. 1, 2012
  • pp: 1008–1017

Binary-Input Non-Line-of-Sight Solar-Blind UV Channels: Modeling, Capacity and Coding

Mohamed A. El-Shimy and Steve Hranilovic  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 12, pp. 1008-1017 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There has been recent interest in establishing non-line-of-sight links in the solar-blind ultraviolet region for outdoor optical wireless communications. This paper presents a novel channel model combining both photon propagation and detection statistics. The channel capacity with binary inputs is numerically computed for on–off keying and 4-pulse-position modulation (4-PPM) at different baud rates. To approach the capacity, error control coding is applied and a message passing decoding technique is outlined. Simulation results for a running example through the paper indicate that, at a given power, there is an optimum transmitted baud rate that maximizes the achievable data rate on such links. With the application of proper coding techniques, it is demonstrated that a near fifty-fold increase in rate over previous reported designs for this channel is feasible.

© 2012 OSA

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(350.0350) Other areas of optics : Other areas of optics
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Research Papers

Original Manuscript: July 16, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 15, 2012
Published: November 20, 2012

Mohamed A. El-Shimy and Steve Hranilovic, "Binary-Input Non-Line-of-Sight Solar-Blind UV Channels: Modeling, Capacity and Coding," J. Opt. Commun. Netw. 4, 1008-1017 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Huffman, Atmospheric Ultraviolet Remote Sensing. Academic Press, 1992.
  2. D. Kedar, “Multiaccess interference in a non-line-of-sight ultraviolet optical wireless sensor network,” Appl. Opt., vol. 46, no. 23, pp. 5895–5901, Aug.2007. [CrossRef] [PubMed]
  3. L. Wang, Y. Li, Z. Xu, and B. M. Sadler, “Wireless ultraviolet network models and performance in noncoplanar geometry,” in IEEE Globecom 2010 Workshop on Optical Wireless Communications (OWC 2010), Miami, FL, Dec. 6–10, 2010, pp. 1037–1041.
  4. G. A. Shaw, A. M. Siegel, and M. L. Nischan, “Demonstration system and applications for compact wireless ultraviolet communications,” Proc. SPIE, vol. 5071, pp. 241–252, 2003. [CrossRef]
  5. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks,” Proc. SPIE, vol. 5611, pp. 244–254, 2004. [CrossRef]
  6. Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag., vol. 46, no. 5, pp. 67–73, May2008.
  7. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A., vol. 8, no. 12, pp. 1964–1972, Dec.1991. [CrossRef]
  8. L. Wang, Z. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett., vol. 35, no. 8, pp. 1263–1265, Apr.2010. [CrossRef] [PubMed]
  9. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for non-coplanar geometries,” J. Opt. Soc. Am. A., vol. 28, no. 3, pp. 420–428, Mar.2011. [CrossRef]
  10. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A., vol. 26, no. 11, pp. 2466–2469, Nov.2009. [CrossRef]
  11. H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wireless Commun. Netw., vol. 2010, pp. 1–12, June2010. [CrossRef]
  12. R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A., vol. 28, no. 4, pp. 686–695, Apr.2011. [CrossRef]
  13. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE, vol. 6231, 62310C, 2006.
  14. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express, vol. 16, no. 19, pp. 15059–15068, Sept.2008. [CrossRef] [PubMed]
  15. G. Chen, F. Abou-Galala, H. D. Z. Xu, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express, vol. 17, no. 5, pp. 3929–3940, Feb.2009. [CrossRef] [PubMed]
  16. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express, vol. 18, no. 12, pp. 12226–12238, May2010. [CrossRef] [PubMed]
  17. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express, vol. 18, no. 10, pp. 10500–10509, May2010. [CrossRef] [PubMed]
  18. L. Wang, Q. He, Z. Xu, and B. M. Sadler, “Performance of non-line-of-sight ultraviolet communication receiver in ISI channel,” Proc. SPIE, vol. 7814, 781409, Aug.2010.
  19. M. Noshad and M. Brandt-Pearce, “NLOS UV communication systems using spectral amplitude coding,” in 2011 IEEE GLOBECOM Workshops, Dec. 5–9, 2011, pp. 843–848.
  20. G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE, vol. 4126, pp. 83–96, 2000. [CrossRef]
  21. M. A. Elshimy and S. Hranilovic, “Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A., vol. 28, no. 12, pp. 2568–2576, Dec.2011. [CrossRef]
  22. J. W. Goodman, Statistical Optics. John Wiley and Sons, Inc., 1985.
  23. J. R. Barry, “Sequence detection and equalization for pulse-position modulation,” in IEEE Int. Conf. Commun., New Orleans, LA, May 1994, vol. 3, pp. 1561–1565.
  24. D. M. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavcic, and W. Zeng, “Simulation-based computation of information rates for channels with memory,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3498–3508, Aug.2006. [CrossRef]
  25. P. H. Algoet and T. M. Cover, “A sandwich proof of the Shannon-McMillan-Breiman theorem,” Ann. Probab., vol. 16, no. 2, pp. 899–909, 1988. [CrossRef]
  26. D. M. Arnold and H.-A. Loeliger, “On the information rate of binary-input channels with memory,” in IEEE Int. Conf. Commun., Helsinki, Finland, June 11–14, 2001, vol. 9, pp. 2692–2695.
  27. J. D. Pfister, J. B. Soriaga, and P. H. Siegel, “On the achievable information rates of finite state ISI channels,” in IEEE Global Telecommunications Conf., San Antonio, TX, 2001, vol. 5, pp. 2992–2996.
  28. M. D. A. Mohamed and S. Hranilovic, “Information rates of optical impulse modulation over indoor diffuse wireless channels,” in 24th Biennial Symp. on Communications, Kingston, ON, Canada, June 24–26, 2008, pp. 196–199.
  29. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, pp. 284–287, Mar.1974. [CrossRef]
  30. M. Eroz, F.-W. Sun, and L.-N. Lee, “DVB-S2 low density parity check codes with near Shannon limit performance,” Int. J. Satellite Commun. Netw., vol. 22, pp. 269–279, 2004. [CrossRef]
  31. Digital Video Broadcasting Project, DVB Standards & Bluebooks [Online]. Available: http://www.dvb.org/technology/standards/index.xml.
  32. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum–product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb.2001. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited