OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 12 — Dec. 1, 2012
  • pp: 947–954

Reciprocity-Enhanced Optical Communication Through Atmospheric Turbulence—Part I: Reciprocity Proofs and Far-Field Power Transfer Optimization

Jeffrey H. Shapiro and Andrew L. Puryear  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 12, pp. 947-954 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Deep (>10 dB) long-duration (>1 ms) scintillation fades, caused by propagation through refractive-index turbulence, are the principal impairment that must be overcome to realize Gbps-class laser communication over line-of-sight atmospheric paths in clear-weather conditions. Spatial diversity reception can ameliorate such fades, to a degree, but current systems typically rely on forward error-correction and interleaving to achieve reliable communication over the atmospheric channel. This paper, together with its companion [A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part II: Communication architectures and performance,” to be submitted to J. Opt. Commun. Netw.], comprise a two-part study that introduces and analyzes an alternative approach, in which atmospheric reciprocity is exploited to eliminate the need for interleaving and minimize the amount of forward error-correction required. The present work (Part I) first describes the problem setting and then presents proofs for reciprocity principles—with and without phase compensation—that apply under rather general conditions. By specializing to the far-field regime, the optimum (power-transfer maximizing) phase compensation is identified. These results underlie the communication architectures and performance analysis that will be reported in the Part II paper.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

Original Manuscript: June 15, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 24, 2012
Published: November 16, 2012

Jeffrey H. Shapiro and Andrew L. Puryear, "Reciprocity-Enhanced Optical Communication Through Atmospheric Turbulence—Part I: Reciprocity Proofs and Far-Field Power Transfer Optimization," J. Opt. Commun. Netw. 4, 947-954 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2811–2827, Nov.2003. [CrossRef]
  2. V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 959–975, Nov./Dec.2000. [CrossRef]
  3. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol. 24, no. 12, pp. 4750–4762, Dec.2006. [CrossRef]
  4. H. Hemmati, A. Biswas, and D. M. Boroson, “Prospects for improvement of interplanetary communication data rates by 30 dB,” Proc. IEEE, vol. 95, no. 10, pp. 2082–2092, Oct.2007. [CrossRef]
  5. B. S. Robinson, D. M. Boroson, D. A. Burianek, and D. V. Murphy, “Overview of the lunar laser communications demonstration,” Proc. SPIE, vol. 7923, pp. 792302-1–792302-4, 2011.
  6. D. J. T. Healey, D. R. Wisely, I. Neild, and P. Cochrane, “Optical wireless: The story so far,” IEEE Commun. Mag., vol. 36, no. 12, pp. 72–74, 79–82, Dec.1998. [CrossRef]
  7. D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol. 42, no. 5, pp. S2–S7, May2004. [CrossRef]
  8. J. H. Shapiro, “Imaging and optical communication through atmospheric turbulence,” in Laser Beam Propagation in the Atmosphere. J. W. Strohbehn, Ed., Springer-Verlag, Berlin, 1978.
  9. D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensation systems,” J. Opt. Soc. Am., vol. 66, no. 3, pp. 193–206, 1976. [CrossRef]
  10. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 842–850, Feb.2005. [CrossRef]
  11. J. A. Greco, “Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4 km free-space optical communication experiment,” Proc. SPIE, vol. 7464, pp. 746409-1–746409-7, 2009.
  12. S. Lin, D. J. Costello Jr., and M. J. Miller, “Automatic-repeat request error-control schemes,” IEEE Commun. Mag., vol. 22, no. 12, pp. 5–17, Dec.1984. [CrossRef]
  13. A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity- enhanced optical communication through atmospheric turbulence—Part II: Communication architectures and perfor mance,” to be submitted to J. Opt. Commun. Netw.
  14. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am., vol. 61, no. 4, pp. 492–495, Apr.1971. [CrossRef]
  15. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt., vol. 10, no. 7, pp. 1652–1658, July1971. [CrossRef] [PubMed]
  16. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature, vol. 353, pp. 144–146, Sept.1991. [CrossRef]
  17. J. H. Shapiro, “Optimal power transfer through atmospheric turbulence using state knowledge,” IEEE Trans. Commun. Technol., vol. 19, pp. 410–414, Aug.1971. [CrossRef]
  18. B. K. Levitt, “Variable-rate optical communication through the turbulent atmosphere,” Tech. Rep. 483, MIT Cambridge Research Lab of Electronics, Aug.20, 1971.
  19. J. D. Moores, F. G. Walther, J. A. Greco, S. Michael, W. E. Wilcox Jr., A. M. Volpicelli, R. J. Magliocco, and S. R. Henion, “Architecture overview and data summary of a 5.4 km free-space laser communications experiment,” Proc. SPIE, vol. 7464, pp. 746404-1–746404-9, 2009.
  20. F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-ground optical communication system demonstration design overview and results summary,” Proc. SPIE, vol. 7814, pp. 78140Y-1–78140Y-9, 2010.
  21. R. R. Parenti, S. Michael, J. M. Roth, and T. M. Yarnall, “Observations of power-in-fiber statistics in two recent free-space communication link experiments,” in Applications of Lasers for Sensing and Free Space Communications, 2010, LSMB3.
  22. R. R. Parenti, J. M. Roth, J. H. Shapiro, and F. G. Walther, “Observations of channel reciprocity in optical free-space communications experiments,” in Applications of Lasers for Sensing and Free Space Communications, 2011, LTuD3.
  23. R. R. Parenti, J. M. Roth, J. H. Shapiro, F. G. Walther, and J. A. Greco, “Experimental observations of channel reciprocity in single-mode free-space optical links,” Opt. Express, vol. 20, no. 19, pp. 21635–21644, Sept.2012. [CrossRef] [PubMed]
  24. R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics. SPIE, Bellingham, 2012.
  25. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE, vol. 63, pp. 1669–1692, Dec.1975. [CrossRef]
  26. V. I. Tatarskii, Wave Propagation in a Turbulent Medium. McGraw-Hill, New York, 1961.
  27. D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding properties of fibers,” in Optical Fiber Telecommunications. S. E. Miller and A. G. Chuynoweth, Eds., Academic, New York, 1979.
  28. J. H. Shapiro, “Point-ahead limitation on reciprocity tracking,” J. Opt. Soc. Am., vol. 65, pp. 65–68, Jan.1975. [CrossRef]
  29. D. Slepian, “Analytical solution to two apodization problems,” J. Opt. Soc. Am., vol. 55, pp. 1110–1114, Sept.1965. [CrossRef]
  30. J. H. Shapiro, “Normal-mode approach to wave propagation in the turbulent atmosphere,” Appl. Opt., vol. 13, pp. 2614–2619, Nov.1974. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited