OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 12 — Dec. 1, 2012
  • pp: 955–966

Power-Efficient Calibration and Reconfiguration for Optical Network-on-Chip

Yan Zheng, Peter Lisherness, Ming Gao, Jock Bovington, Kwang-Ting Cheng, Hong Wang, and Shiyuan Yang  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 12, pp. 955-966 (2012)
http://dx.doi.org/10.1364/JOCN.4.000955


View Full Text Article

Enhanced HTML    Acrobat PDF (1436 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in nanophotonic fabrication have made the optical network-on-chip an attractive interconnect option for next-generation multi-/many-core systems, providing high bandwidth and power efficiency. Both post-fabrication and runtime calibration of the optical components (ring resonators) are essential to building a robust optical communication system, as they are highly sensitive to process and thermal variation. Existing tuning methods based on bias voltage and temperature adjustment require excessive power to fully compensate for these variations. In this work, we propose a set of complementary techniques to address this challenge and significantly reduce the tuning power consumption: 1) a subchannel remapping scheme to decrease the required tuning from the free spectral range to less than one channel (typically less than 1 nm); 2) a transceiver-based network topology capable of building and tuning far fewer rings while maintaining the same system throughput. Our results show that the proposed methods can together reduce the tuning power by as much as 99.85%.

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Research Papers

History
Original Manuscript: June 20, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: October 1, 2012
Published: November 19, 2012

Citation
Yan Zheng, Peter Lisherness, Ming Gao, Jock Bovington, Kwang-Ting Cheng, Hong Wang, and Shiyuan Yang, "Power-Efficient Calibration and Reconfiguration for Optical Network-on-Chip," J. Opt. Commun. Netw. 4, 955-966 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-12-955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS,” in IEEE Int. Solid-State Circuits Conf., Jan. 2008.
  2. L Monroe, J. Wendelberger, and S. Michalak, “Randomized selection on the GPU,” in ACM SIGGRAPH Symp. on High Performance, 2011.
  3. S. K. Moore, “Top 11 technologies of the decade; #5: Multicore CPUs,” IEEE Spectrum, vol. 48, no. 1, pp. 40–42, Jan.2011.
  4. J. Chan and K. Bergman, “Photonic interconnection network architectures using wavelength-selective spatial routing for chip-scale communications,” J. Opt. Commun. Netw., vol. 4, no. 3, pp. 189–201, 2012. [CrossRef]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, pp. 518–526, July2010. [CrossRef]
  6. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express, vol. 19, pp. 17758–17765, 2011. [CrossRef] [PubMed]
  7. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express, vol. 15, no. 18, pp. 11225–11233, 2007. [CrossRef] [PubMed]
  8. D. Liang, S. Srinivasan, S. T. Todd, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Optimization of hybrid silicon microring lasers,” IEEE Photonics J., vol. 3, no. 3, pp. 580–587, June2011. [CrossRef]
  9. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p–i–n diode embedded silicon microring resonator,” Appl. Phys. Lett., vol. 95, 171111, 2009. [PubMed]
  10. J. Doylend, P. Jessop, and A. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express, vol. 18, pp. 14671–14678, 2010. [CrossRef] [PubMed]
  11. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in IEEE Int. Conf. on Group IV Photonics, Sept. 2008, pp. 4–6.
  12. E. Bernier, M. Vukovic, D. J. Goodwill, P. F. Daspit, and G. Q. Wang, “OMNInet: A metropolitan 10 Gb/s DWDM photonic switched network trial,” in Optical Fiber Communication Conf., Feb. 2004.
  13. A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic, “Silicon-photonic Clos networks for global on-chip communication,” in NOCS-3, May 2009.
  14. A. Shacham, K. Bergman, and L. Carloni, “Photonic networks on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1246–1260, Sept.2008. [CrossRef]
  15. G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. Carloni, and K. Bergman, “Silicon nanophotonic network-on-chip using TDM arbitration,” in 2010 IEEE 18th Annu. Symp. on High Performance Interconnects (HOTI), Aug. 2010, pp. 88–95.
  16. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology,” in ISCA, 2008.
  17. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J., vol. 3, no. 3, pp. 567–579, June2011. [CrossRef]
  18. Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. VLSI Syst., vol. 20, no. 1, pp. 98–111, 2011. [CrossRef]
  19. P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express, vol. 18, no. 11, pp. 10941–10946, 2010. [CrossRef] [PubMed]
  20. Z. Li, “On-chip optical and electrical communication: Analysis and design for system level performance and reliability,” Ph.D. dissertation, Tsinghua University, Beijing, 2010.
  21. P. Hyundai, M. N. Sysak, H. W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. B. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 3, pp. 671–688, Mar.2011. [CrossRef]
  22. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, vol. 431, pp. 1081–1084, 2004. [CrossRef] [PubMed]
  23. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 767–769, May2008. [CrossRef]
  24. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327, May2005. [CrossRef] [PubMed]
  25. M. C. Tien, “Silicon photonic devices for optoelectronic integrated circuits,” Ph.D. dissertation, University of California, Berkeley, Berkeley, CA, 2009.
  26. J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A, vol. 95, no. 4, pp. 989–997, 2009. [CrossRef]
  27. B. Fu, Y. Han, H. Li, and X. Li, “Accelerating lightpath setup via broadcasting in binary-tree waveguide in optical NoCs,” in DATE10, 2010, pp. 933–936.
  28. Q. Xu, S. Manipatruni, B. Scmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express, vol. 15, no. 2, pp. 430–436, 2007. [CrossRef] [PubMed]
  29. Z. Li, M. Mohanmed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in DAC, June 2011.
  30. P. Dong, R. Shafiiha, S. Liao, H. Liang, C. C. Kung, W. Qian, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Broadly tunable high speed silicon micro-ring modulator,” in IEEE Photonics Society Summer Topical Meeting Series, July 2010, pp. 197–198.
  31. Z. Li, Y. Sun, M. Mohamed, H. Zhou, L. Shang, A. R. Mickelson, D. S. Filipovic, M. Vachharajani, X. Chen, and W. Park, “Global on-chip coordination at light speed,” IEEE Des. Test Comput., vol. 27, no. 4, pp. 54–67, July2010.
  32. A. Krishnamoorthy, “Low-power, high-density optical interconnects to the processor,” in Optical Fiber Communication Conf., Mar. 2011.
  33. V. Raghunathan, J. Hu, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in IPRSN, 2010.
  34. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol., vol. 25, no. 8, pp. 2236–2243, Aug.2007. [CrossRef]
  35. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett., vol. 21, no. 17, pp. 1175–1177, Sept.2009. [CrossRef]
  36. B. Guha, B. Kyotoku, and M Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express, vol. 18, no. 4, pp. 3487–3493, 2010. [CrossRef] [PubMed]
  37. S. G. Hegde and S. K. Sitaraman, “Thermal aging reliability of package-level polymer optical waveguides,” IEEE Trans. Adv. Packag., vol. 31, no. 2, pp. 410–416, May2008. [CrossRef]
  38. M. Immonen, J. Wu, and J. Kivilahti, “Influence of environmental stresses on board-level integrated polymer optics,” in Electronic Components and Technology Conf., 2005.
  39. J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express, vol. 19, no. 13, pp. 11969–11976, 2011. [CrossRef] [PubMed]
  40. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express, vol. 19, no. 11, pp. 10728–10734, 2011. [CrossRef] [PubMed]
  41. W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, and M. R. Stan, “Differentiating the roles of IR measurement and simulation for power and temperature-aware design,” in ISPASS, Apr. 2009.
  42. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express, vol. 20, no. 14, pp. 15079–15085, 2012. [CrossRef] [PubMed]
  43. N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in ISCA, San Jose, CA, June 2011.
  44. Y. Zheng, P. Lisherness, M. Gao, J. Bovington, S. Yang, and K. T. Cheng, “Power-efficient calibration and reconfiguration for on-chip optical communication,” in DATE12, Dresden, Germany, Mar. 2012.
  45. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express, vol. 16, no. 6, pp. 4309–4315, Mar.2008. [CrossRef] [PubMed]
  46. International Technology Roadmap for Semiconductors [Online]. Available: http://www.itrs.net/.
  47. Y. Zheng, P. Lisherness, S. Shamshiri, A. Ghofrani, S. Yang, and K. T. Cheng, “Post-fabrication reconfiguration for power-optimized tuning of optically connected multi-core systems,” in ASP-DAC12, Sydney, Australia, Jan. 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited