OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 2 — Feb. 1, 2012
  • pp: 130–141

Statistical Approach for Fast Impairment-Aware Provisioning in Dynamic All-Optical Networks

L. Velasco, A. Jirattigalachote, M. Ruiz, P. Monti, L. Wosinska, and G. Junyent  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 2, pp. 130-141 (2012)
http://dx.doi.org/10.1364/JOCN.4.000130


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Physical layer impairments (PLIs) need to be considered in the routing and wavelength assignment (RWA) process of all-optical networks to ensure the provisioning of good quality optical connections (i.e., lightpaths). A convenient way to model the impact of PLIs on the signal quality is to use the so-called Q-factor. In a dynamic provisioning environment, impairment-aware RWA (IA-RWA) algorithms include Q-factor evaluation in their on-line decisions on whether to accept a connection request or not. The Q-factor can be computed in either an approximated or an exact way. IA-RWA algorithms using an approximated Q-factor estimation (i.e., worst case) can be very fast and allow for a short setup delay. However, connection request blocking can be unnecessarily high because of the worst-case assumption for the Q-factor parameters. In contrast, an exact Q-factor computation results in a better blocking performance at the expense of a longer setup delay, mainly due to the time spent for the Q-factor computation itself. Moreover, an exact Q-factor approach requires extensions of the generalized multi-protocol label switching suite. To overcome these problems, we propose a statistical approach for fast impairment-aware RWA (SAFIR) computation. The evaluation results reveal that SAFIR improves the blocking probability performance compared to the worst-case scenario without adding extra computational complexity and, consequently, without increasing the connection setup delay.

© 2012 OSA

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms

ToC Category:
Research Papers

History
Original Manuscript: July 20, 2011
Revised Manuscript: January 3, 2012
Manuscript Accepted: January 6, 2012
Published: January 30, 2012

Citation
L. Velasco, A. Jirattigalachote, M. Ruiz, P. Monti, L. Wosinska, and G. Junyent, "Statistical Approach for Fast Impairment-Aware Provisioning in Dynamic All-Optical Networks," J. Opt. Commun. Netw. 4, 130-141 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-2-130


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jirattigalachote, P. Monti, L. Wosinska, K. Katrinis, and A. Tzanakaki, “ICBR-Diff: an impairment constraint based routing strategy with quality of signal differentiation,” J. Networks, vol. 5, pp. 1279–1289, 2010.
  2. P. Pavon-Marino, S. Azodolmolky, R. Aparicio-Pardo, B. Garcia-Manrubia, Y. Pointurier, M. Angelou, J. Sole-Pareta, J. Garcia-Haro, and I. Tomkos, “Offline impairment aware RWA algorithms for cross-layer planning of optical networks,” J. Lightwave Technol., vol. 27, pp. 1763–1775, 2009. [CrossRef]
  3. R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, “Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks,” IEEE Commun. Mag., vol. 44, no. 12, pp. 76–85, 2006. [CrossRef]
  4. F. Agraz, S. Azodolmolky, M. Angelou, J. Perelló, L. Velasco, S. Spadaro, A. Francescon, C. V. Saradhi, Y. Pointurier, P. Kokkinos, E. Varvarigos, M. Gunkel, and I. Tomkos, “Experimental demonstration of centralized and distributed impairment-aware control plane schemes for dynamic transparent optical networks,” in Optical Fiber Communication Conf. (OFC), 2010, PDPD5.
  5. S. Azodolmolky, M. Klinkowski, E. Marín, D. Careglio, J. Solé-Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009. [CrossRef]
  6. R. Cardillo, V. Curri, and M. Mellia, “Considering transmission impairments in wavelength routed networks,” in Conf. on Optical Networking Design and Modeling (ONDM), 2005, pp. 421–429.
  7. D. Monoyios and K. Vlachos, “Multiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problem,” J. Opt. Commun. Netw., vol. 3, pp. 40–47, 2011. [CrossRef]
  8. S. Pachnicke, T. Paschenda, and P. Krummrich, “Assessment of a constraint-based routing algorithm for translucent 10 Gbits/s DWDM networks considering fiber non-linearities,” J. Opt. Netw., vol. 7, pp. 365–377, 2008. [CrossRef]
  9. E. Salvadori, Y. Yabin, C. Saradhi, A. Zanardi, H. Woesner, M. Carcagni, G. Galimberti, G. Martinelli, A. Tanzi, and D. La Fauci, “Distributed optical control plane architectures for handling transmission impairments in transparent optical networks,” J. Lightwave Technol., vol. 27, pp. 2224–2239, 2009. [CrossRef]
  10. S. Azodolmolky, J. Perelló, M. Angelou, F. Agraz, L. Velasco, S. Spadaro, Y. Pointurier, A. Francescon, C. Vijaya, P. Kokkinos, E. Varvarigos, S. Al Zahr, M. Gagnaire, M. Gunkel, D. Klonidis, and I. Tomkos, “Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks,” J. Lightwave Technol., vol. 29, pp. 439–448, 2011. [CrossRef]
  11. “Architecture for the automatically switched optical network (ASON),” ITU Recommendation G.8080/Y.1304, Nov.2001.
  12. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC-3945, 2004.
  13. S. Ten, K. Ennser, J. Grochocinski, S. Burtsev, and V. daSilva, “Comparison of four-wave mixing and cross phase modulation penalties in dense WDM systems,” in Optical Fiber Communication Conf. (OFC), 1999, pp. 43–45.
  14. R. Hui, K. Demarest, and C. Allen, “Cross-phase modulation in multispan WDM optical fiber systems,” J. Lightwave Technol., vol. 17, pp. 1018–1026, 1999. [CrossRef]
  15. A. Cartaxo, “Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol., vol. 17, pp. 178–190, 1999. [CrossRef]
  16. S. Pachnicke and E. Voges, “Analytical assessment of the Q-factor due to cross-phase modulation (XPM) in multispan WDM transmission systems,” Proc. SPIE, vol. 5247, pp. 61–70, 2003.
  17. Y. Qin, S. Azodolmolky, M. Gunkel, R. Nejabati, and D. Simeonidou, “Hardware accelerated impairment-aware control plane for future optical networks,” IEEE Commun. Lett., vol. 15, pp. 1004–1006, 2011. [CrossRef]
  18. N. Sambo, M. Secondini, F. Cugini, G. Bottari, P. Iovanna, F. Cavaliere, and P. Castoldi, “Modeling and distributed provisioning in 10–40–100-Gb/s multirate wavelength switched optical networks,” J. Lightwave Technol., vol. 29, pp. 1248–1257, 2011. [CrossRef]
  19. D. Montgomery, Design and Analysis of Experiments. Wiley & Sons, 2004.
  20. D. Leung and W. Grover, “Capacity planning of survivable mesh-based transport networks under demand uncertainty,” Photonic Network Commun., vol. 10, pp. 123–140, 2005. [CrossRef]
  21. W. Grover, Mesh-Based Survivable Transport Networks: Options and Strategies for Optical, MPLS, SONET and ATM Networking. Prentice Hall, 2003.
  22. S. Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester, C. Mauz, M. Jaeger, R. Inkret, B. Mikac, and J. Derkacz, “Pan-European optical transport networks: An availability-based comparison,” Photonic Network Commun., vol. 5, pp. 203–225, 2003. [CrossRef]
  23. L. Song and B. Mukherjee, “Accumulated-downtime-oriented restoration strategy with service differentiation in survivable WDM mesh networks,” J. Opt. Commun. Netw., vol. 1, pp. 113–124, 2009. [CrossRef]
  24. MATLAB [Online]. Available: http://www.mathworks.com/products/matlab/.
  25. L. Velasco, F. Agraz, R. Martínez, R. Casellas, S. Spadaro, R. Muñoz, and G. Junyent, “GMPLS-based multi-domain restoration: Analysis, strategies, policies and experimental assessment,” J. Opt. Commun. Netw., vol. 2, pp. 427–441, 2010. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited