OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 2 — Feb. 1, 2012
  • pp: 130–141

Statistical Approach for Fast Impairment-Aware Provisioning in Dynamic All-Optical Networks

L. Velasco, A. Jirattigalachote, M. Ruiz, P. Monti, L. Wosinska, and G. Junyent  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 2, pp. 130-141 (2012)
http://dx.doi.org/10.1364/JOCN.4.000130


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Physical layer impairments (PLIs) need to be considered in the routing and wavelength assignment (RWA) process of all-optical networks to ensure the provisioning of good quality optical connections (i.e., lightpaths). A convenient way to model the impact of PLIs on the signal quality is to use the so-called Q-factor. In a dynamic provisioning environment, impairment-aware RWA (IA-RWA) algorithms include Q-factor evaluation in their on-line decisions on whether to accept a connection request or not. The Q-factor can be computed in either an approximated or an exact way. IA-RWA algorithms using an approximated Q-factor estimation (i.e., worst case) can be very fast and allow for a short setup delay. However, connection request blocking can be unnecessarily high because of the worst-case assumption for the Q-factor parameters. In contrast, an exact Q-factor computation results in a better blocking performance at the expense of a longer setup delay, mainly due to the time spent for the Q-factor computation itself. Moreover, an exact Q-factor approach requires extensions of the generalized multi-protocol label switching suite. To overcome these problems, we propose a statistical approach for fast impairment-aware RWA (SAFIR) computation. The evaluation results reveal that SAFIR improves the blocking probability performance compared to the worst-case scenario without adding extra computational complexity and, consequently, without increasing the connection setup delay.

© 2012 OSA

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms

ToC Category:
Research Papers

History
Original Manuscript: July 20, 2011
Revised Manuscript: January 3, 2012
Manuscript Accepted: January 6, 2012
Published: January 30, 2012

Citation
L. Velasco, A. Jirattigalachote, M. Ruiz, P. Monti, L. Wosinska, and G. Junyent, "Statistical Approach for Fast Impairment-Aware Provisioning in Dynamic All-Optical Networks," J. Opt. Commun. Netw. 4, 130-141 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-2-130

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited