OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 2 — Feb. 1, 2012
  • pp: 66–77

Optimized Burst LSP Design for Absolute QoS Guarantees in GMPLS-Controlled OBS Networks

Pedro Pedroso, Jordi Perelló, Davide Careglio, Miroslaw Klinkowski, and Salvatore Spadaro  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 2, pp. 66-77 (2012)
http://dx.doi.org/10.1364/JOCN.4.000066


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Over the past decade, the scientific community has thrown itself into assessing optical burst switching (OBS) as the switching technology for next-generation all-optical networks. In this regard, a significant amount of work has concentrated on providing OBS with the required carrier-class features. During this process, however, little attention has been paid to fundamental questions on the interoperability and interworking issues that OBS will have to face in a heterogeneous network scenario such as the future Internet. This article introduces a generalized multi-protocol label switching (GMPLS)-based control plane architecture for future OBS networks. This GMPLS/OBS control plane solution leverages on the GMPLS interoperability to enable seamless vertical and horizontal OBS integration with different switching layers under a common control plane. The burst label switched path (b-LSP) entity has been introduced to accomplish this purpose, as well as to guarantee end-users’ quality of service (QoS) requirements to effectively support emerging data applications. The establishment of a b-LSP does not entail explicit resource reservation, but the addition of new entries in the OBS node forwarding tables with the resources available for that b-LSP. Hence, by making a resource available to multiple b-LSPs, the statistical multiplexing nature of OBS is preserved. A mixed integer linear programing formulation has been presented to get the most out of the available resources given the expected traffic demands and their QoS requirements. Moreover, in the network operation phase, GMPLS-driven b-LSP capacity reconfigurations are dynamically triggered whenever unfavorable network conditions are detected. An exhaustive simulation campaign assesses the performance of the proposed GMPLS/OBS network architecture on different network scenarios. Finally, future research lines on the topic are outlined.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.4259) Fiber optics and optical communications : Networks, packet-switched

ToC Category:
Research Papers

History
Original Manuscript: March 21, 2011
Revised Manuscript: September 28, 2011
Manuscript Accepted: December 8, 2011
Published: January 6, 2012

Citation
Pedro Pedroso, Jordi Perelló, Davide Careglio, Miroslaw Klinkowski, and Salvatore Spadaro, "Optimized Burst LSP Design for Absolute QoS Guarantees in GMPLS-Controlled OBS Networks," J. Opt. Commun. Netw. 4, 66-77 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-2-66

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited