OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 3 — Mar. 1, 2012
  • pp: 189–201

Photonic Interconnection Network Architectures Using Wavelength-Selective Spatial Routing for Chip-Scale Communications

Johnnie Chan and Keren Bergman  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 3, pp. 189-201 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The overall performance of modern computing systems is increasingly determined by the characteristics of the interconnection network used to provide communication links between on-chip cores and off-chip memory. Photonic technology has been proposed as an alternative to traditional electronic interconnects because of its advantages in bandwidth density, latency, and power efficiency. Circuit-switched photonic interconnect topologies take advantage of the optical spectrum to create high-bandwidth transmission links through the transmission of data channels on multiple parallel wavelengths; however, this technique suffers from low path diversity and high setup time overhead, which induces high network resource contention, unfairness, and long latencies. This work improves upon the circuit-switching paradigm by introducing the use of on-chip wavelength-selective spatial routing to produce multiple logical communication layers on a single physical plane. This technique yields higher path diversity in photonic interconnection networks, demonstrating as much as 764% saturation bandwidth improvement with synthetic traffic and as much as 89% improvement in execution time and energy dissipation for traffic from scientific application traces.

© 2012 OSA

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Research Papers

Original Manuscript: October 27, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 20, 2012
Published: February 13, 2012

Johnnie Chan and Keren Bergman, "Photonic Interconnection Network Architectures Using Wavelength-Selective Spatial Routing for Chip-Scale Communications," J. Opt. Commun. Netw. 4, 189-201 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, no. 4, pp. 549–551, Apr.1998. [CrossRef]
  2. B. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 767–769, May2008. [CrossRef]
  3. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), Oct. 2007, pp. 537–538.
  4. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express, vol. 17, no. 25, pp. 22271–22280, Dec.2009. [CrossRef] [PubMed]
  5. K. Preston, N. Sherwood-Droz, J. Levy, and M. Lipson, “Performance guidelines for WDM interconnects based on silicon microring resonators,” in Conf. on Lasers and Electro-Optics (CLEO), May 2011.
  6. J. Feng, Q. Li, and Z. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett., vol. 23, no. 2, pp. 79–81, Jan.2011. [CrossRef]
  7. J. Garcia, A. Martinez, and J. Marti, “Optical add-drop multiplexer with FSR higher than 140 nm using ring resonators and photonic bandgap structures,” in 5th IEEE Int. Conf. on Group IV Photonics, Sept. 2008, pp. 82–84.
  8. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol., vol. 20, no. 8, pp. 1525–1529, Aug.2002. [CrossRef]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics, vol. 1, pp. 65–71, 2006. [CrossRef]
  10. M. Gnan, S. Thorns, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett., vol. 44, no. 2, pp. 115–116, Jan.2008. [CrossRef]
  11. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett., vol. 32, no. 19, pp. 2801–2803, 2007. [CrossRef] [PubMed]
  12. S. Assefa, B. G. Lee, C. Schow, W. M. Green, A. Rylyakov, R. A. John, and Y. A. Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in CLEO 2011—Laser Applications to Photonic Applications, 2011, PDPB11.
  13. N. Ophir, K. Padmaraju, A. Biberman, L. Chen, K. Preston, M. Lipson, and K. Bergman, “First demonstration of error-free operation of a full silicon on-chip photonic link,” in Optical Fiber Communication Conf., 2011, OWZ3.
  14. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro, vol. 29, no. 4, pp. 8–21, July–Aug.2009. [CrossRef]
  15. N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Albonesi, “On-chip optical technology in future bus-based multicore designs,” IEEE Micro, vol. 27, no. 1, pp. 56–66, 2007. [CrossRef]
  16. M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi, “Phastlane: a rapid transit optical routing network,” in Proc. of the 36th Annu. Int. Symp. on Computer Architecture (ISCA), 2009, pp. 441–450.
  17. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology,” in Proc. of the 35th Annu. Int. Symp. on Computer Architecture (ISCA), June 2008, pp. 153–164.
  18. S. Koohi, M. Abdollahi, and S. Hessabi, “All-optical wavelength-routed NoC based on a novel hierarchical topology,” in 5th IEEE/ACM Int. Symp. on Networks on Chip (NoCS), May 2011, pp. 97–104.
  19. A. Shacham, K. Bergman, and L. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1246–1260, Sept.2008. [CrossRef]
  20. G. Hendry, S. Kamil, A. Biberman, J. Chan, B. Lee, M. Mohiyuddin, A. Jain, K. Bergman, L. Carloni, J. Kubiatowicz, L. Oliker, and J. Shalf, “Analysis of photonic networks for a chip multiprocessor using scientific applications,” in 3rd ACM/IEEE Int. Symp. on Networks-on-Chip (NOCS), May 2009, pp. 104–113.
  21. J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis,” J. Lightwave Technol., vol. 28, no. 9, pp. 1305–1315, May2010. [CrossRef]
  22. G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. Carloni, and K. Bergman, “Silicon nanophotonic network-on-chip using TDM arbitration,” in 2010 IEEE 18th Annu. Symp. on High Performance Interconnects (HOTI), Aug. 2010, pp. 88–95.
  23. C. Qiao and R. Melhem, “Reducing communication latency with path multiplexing in optically interconnected multiprocessor systems,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 2, pp. 97–108, Feb.1997. [CrossRef]
  24. X. Yuan, R. Melhem, and R. Gupta, “Distributed path reservation algorithms for multiplexed all-optical interconnection networks,” IEEE Trans. Comput., vol. 48, no. 12, pp. 1355–1363, Dec.1999. [CrossRef]
  25. J. Chan, N. Ophir, C. P. Lai, A. Biberman, H. L. R. Lira, M. Lipson, and K. Bergman, “Data transmission using wavelength-selective spatial routing for photonic interconnection networks,” in Optical Fiber Communication Conf., Mar. 2011.
  26. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express, vol. 16, no. 6, pp. 4309–4315, Mar.2008. [CrossRef] [PubMed]
  27. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay,” Opt. Express, vol. 14, no. 24, pp. 11622–11630, Nov.2006. [CrossRef] [PubMed]
  28. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, Aug.2003. [CrossRef] [PubMed]
  29. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst., vol. 7, pp. 7:1–7:25, July2011.
  30. J. Chan, G. Hendry, K. Bergman, and L. Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des., vol. 30, no. 10, pp. 1507–1520, Oct.2011. [CrossRef]
  31. A. Canning, L. Wang, A. Williamson, and A. Zunger, “Parallel empirical pseudopotential electronic structure calculations for million atom systems,” J. Comput. Phys., vol. 160, no. 1, pp. 29–41, 2000. [CrossRef]
  32. Cactus Computational Toolkit [Online]. Available: http://www.cactuscode.org/.
  33. Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, “Size scaling of turbulent transport in magnetically confined plasmas,” Phys. Rev. Lett., vol. 88, no. 19, 195004, Apr.2002. [CrossRef] [PubMed]
  34. J. Borrill, J. Carter, L. Oliker, and D. Skinner, “Integrated performance monitoring of a cosmology application on leading HEC platforms,” in Proc. of the 2005 Int. Conf. on Parallel Processing, 2005, pp. 119–128.
  35. A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A power-area simulator for interconnection networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp. 191–196, Jan.2012.
  36. M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE Int. Conf. on Group IV Photonics, Sept. 2008, pp. 4–6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited