OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 5 — May. 1, 2012
  • pp: 344–355

Experimental Demonstration of a GMPLS-enabled Impairment-Aware Lightpath Restoration Scheme

Jordi Perelló, Salvatore Spadaro, Fernando Agraz, Marianna Angelou, Siamak Azodolmolky, Yixuan Qin, Reza Nejabati, Dimitra Simeonidou, Pannagiotis Kokkinos, Emmanouel (Manos) Varvarigos, and Ioannis Tomkos  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 5, pp. 344-355 (2012)
http://dx.doi.org/10.1364/JOCN.4.000344


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fast lightpath restoration becomes particularly challenging in all-optical networks. First, the optical transparency complicates failure localization and isolation procedures, as loss of light alarms stemming from a failure propagate downstream from the failure point. Besides, such a transparency implies that optical signals must traverse relatively long distances without electrical regeneration. In view of this, backup path computations must also account for all degradations introduced in the physical end-to-end path, thus ensuring their feasibility. Looking toward the optical core networks of the future, the EU DICONET Project has worked on cross-layer solutions to enhance network control and management with the impairment-awareness needed to govern the underlying optical layer. This includes a network planning and operation tool (NPOT) that implements impairment-aware routing and wavelength assignment algorithms, along with a failure localization mechanism. This paper reports the experimental demonstration of a dynamic impairment-aware restoration scheme that benefits from enhanced NPOT features for fast lightpath restoration. To this end, a prioritized scheduler to provide differentiated resilience support, the implementation of the quality of transmission estimator module on field programmable gate array hardware, and a fast resource pre-reservation protocol are presented in this work. The performance of the proposed impairment-aware lightpath restoration scheme has been evaluated experimentally on a 14-node all-optical network test-bed, showing average restoration times of 1.16 and 1.64 s for high and low priority traffic classes, respectively.

© 2012 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4261) Fiber optics and optical communications : Networks, protection and restoration

ToC Category:
Research Papers

History
Original Manuscript: June 29, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: March 19, 2012
Published: April 10, 2012

Citation
Jordi Perelló, Salvatore Spadaro, Fernando Agraz, Marianna Angelou, Siamak Azodolmolky, Yixuan Qin, Reza Nejabati, Dimitra Simeonidou, Pannagiotis Kokkinos, Emmanouel (Manos) Varvarigos, and Ioannis Tomkos, "Experimental Demonstration of a GMPLS-enabled Impairment-Aware Lightpath Restoration Scheme," J. Opt. Commun. Netw. 4, 344-355 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-5-344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: Past, present, and future,” J. Lightwave Technol., vol. 26, no. 9, pp. 1104–1118, May2008. [CrossRef]
  2. A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag., vol. 49, no. 1, pp. 126–132, Jan.2011. [CrossRef]
  3. A. Jajszczyk, “Automatically switched optical networks: benefits and requirements,” IEEE Commun. Mag., vol. 43, no. 2, pp. S8–S13, Feb.2005.
  4. W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. Prentice-Hall PTR, 2004.
  5. A. Farrel and I. Bryskin, GMPLS: Architecture and Applications. Academic Press, 2006.
  6. X. Yang and B. Ramamurthy, “Dynamic routing in translucent WDM optical networks: The intradomain case,” J. Lightwave Technol., vol. 23, no. 3, pp. 955–971, Mar.2005. [CrossRef]
  7. V. Anagnostopoulos, C. Politi, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware wavelength routing algorithms based on analytically calculated constraints,” Opt. Commun., vol. 270, no. 2, pp. 247–254, Feb.2007. [CrossRef]
  8. H. Yurong, J. P. Heritage, and B. Mukherjee, “Connection provisioning with transmission impairment consideration in optical WDM networks with high-speed channels,” J. Lightwave Technol., vol. 23, no. 3, pp. 982–993, Mar.2005. [CrossRef]
  9. J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, “QoT-aware routing in impairment-constrained optical networks,” in Proc. of IEEE GLOBECOM 2007, Nov. 2007.
  10. A. Morea, N. Brogard, F. Leplingard, J. Antona, T. Zami, B. Lavigne, and D. Bayart, “QoT function and A* routing: an optimized combination for connection search in translucent networks,” J. Opt. Netw., vol. 7, no. 1, pp. 42–61, Jan.2008. [CrossRef]
  11. S. Rai, C. Su, and B. Mukherjee, “On provisioning in all-optical networks: an impairment-aware approach,” IEEE/ACM Trans. Netw., vol. 17, no. 6, pp. 1989–2001, Dec.2009. [CrossRef]
  12. S. Pachnicke, T. Paschenda, and P. Krummrich, “Assessment of a constraint-based routing algorithm for translucent 10 Gbits/s DWDM networks considering fiber nonlinearities,” J. Opt. Netw., vol. 7, no. 4, pp. 365–377, Apr.2008. [CrossRef]
  13. Y. Lee, G. Bernstein, D. Li, and G. Martinelli, “A framework for the control of wavelength switched optical networks (WSON) with impairments,” IETF draft, Jan.2012 [Online]. Available: http://tools.ietf.org/html/draft-ietf-ccamp-wson-impairments-10.
  14. F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, “Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks,” J. Lightwave Technol., vol. 26, no. 19, pp. 3318–3328, Oct.2008. [CrossRef]
  15. R. Martinez, R. Casellas, R. Muñoz, and T. Tsuritani, “Experimental translucent-oriented routing for dynamic lightpath provisioning in GMPLS-enabled wavelength switched optical networks,” J. Lightwave Technol., vol. 28, no. 8, pp. 1241–1255, Apr.2010. [CrossRef]
  16. S. Azodolmolky, M. Klinkowski, E. Marín Tordera, D. Careglio, J. Solé-Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May2009. [CrossRef]
  17. H. Zeng, C. Huang, A. Vukovic, and M. Savoie, “Fault detection and path performance monitoring in meshed all-optical networks,” in Proc. of IEEE GLOBECOM 2004, Nov. 2004.
  18. B. Wu, P. Ho, and K. Yeung, “Monitoring trail: On fast link failure localization in WDM mesh networks,” J. Lightwave Technol., vol. 27, no. 23, pp. 4175–4185, Dec.2009. [CrossRef]
  19. J. Tapolcai, B. Wu, and P.-H. Ho, “On monitoring and failure localization in mesh all-optical networks,” in Proc. of INFOCOM 2009, June 2009.
  20. C. Mas, I. Tomkos, and O. Tonguz, “A failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug.2005. [CrossRef]
  21. S. Stanic, G. Sahin, H. Choi, S. Subramaniam, and H.-A. Choi, “Monitoring and alarm management in transparent optical networks,” in Proc. of IEEE BROADNETS 2007, Sept. 2007.
  22. S. Azodolmolky, D. Klonidis, I. Tomkos, Y. Ye, C. V. Saradhi, E. Salvadori, M. Gunkel, K. Manousakis, K. Vlachos, E. Varvarigos, R. Nejabati, D. Simeonidou, M. Eiselt, J. Comellas, J. Solé-Pareta, C. Simonneau, D. Bayart, D. Staessens, D. Colle, and M. Pickavet, “A dynamic impairment aware networking solution for transparent mesh optical networks,” IEEE Commun. Mag., vol. 47, no. 5, pp. 38–47, May2009. [CrossRef]
  23. S. Azodolmolky, J. Perelló, M. Angelou, F. Agraz, L. Velasco, S. Spadaro, Y. Pointurier, A. Francescon, C. V. Saradhi, P. Kokkinos, E. Varvarigos, S. Al Zahr, M. Gagnaire, M. Gunkel, D. Klonidis, and I. Tomkos, “Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks,” J. Lightwave Technol., vol. 29, no. 4, pp. 439–448, Feb.2011. [CrossRef]
  24. L. Berger, “Generalized multi-protocol label switching (GMPLS) signalling resource reservation protocol-traffic engineering (RSVP-TE) extensions,” IETF RFC 3473, Jan.2003.
  25. D. Katz, K. Kompella, and D. Yeung, “Traffic engineering (TE) extensions to OSPF version 2,” IETF RFC 3630, Sept.2003.
  26. K. Christodoulopoulos, P. Kokkinos, and E. M. Varvarigos, “Indirect and direct multicost algorithms for online impairment-aware RWA,” IEEE/ACM Trans. Netw., vol. 19, no. 6, pp. 1759–1772, Dec.2011. [CrossRef]
  27. A. Haddad, E. A. Doumith, and M. Gagnaire, “A meta-heuristic approach for monitoring trail assignment in WDM optical networks,” in Proc. of IFIP/IEEE RNDM 2010, Oct. 2010.
  28. Y. Qin, S. Azodolmolky, M. Gunkel, R. Nejabati, and D. Simeonidou, “Hardware accelerated impairment-aware control plane for future optical networks,” IEEE Commun. Lett., vol. 15, no. 9, pp. 1004–1006, Sept.2011. [CrossRef]
  29. A. Farrel, J. P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” IETF RFC 4655, Aug.2006.
  30. J. Lang, “Link management protocol (LMP),” IETF RFC 4204, Oct.2005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited