OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 5 — May. 1, 2012
  • pp: 412–425

Analysis of Large-Scale Multi-Stage All-Optical Packet Switching Routers

Q. Xu, H. Rastegarfar, Y. Ben M’Sallem, A. Leon-Garcia, S. LaRochelle, and L. A. Rusch  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 5, pp. 412-425 (2012)
http://dx.doi.org/10.1364/JOCN.4.000412


View Full Text Article

Enhanced HTML    Acrobat PDF (1378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-optical packet switching can overcome limitations of electronic switches in terms of power consumption, speed, cost, and footprint. Switch architectures combining wavelength converters and fiber delay lines provide tunable routing and contention resolution when used with an N × N arrayed waveguide grating (AWG), a key passive optical component to bypass electronic processing limitations. An AWG passively routes either single or multiple input port wavelengths to output ports. A single wavelength per port strategy reduces crosstalk within the AWG, but drastically increases the dimensionality of the device. AWG design constraints due to bandwidth limitations and fabrication processes limit the port number for the foreseeable future to under 100. In order to scale optical switches to emerging network requirements, we must use multiple wavelengths per port. In this paper, we examine several optical router architectures for data center applications using multiple wavelengths per port, and quantify the physical layer impairments. We consider not only the AWG crosstalk, but also Q-factor degradation caused by the multiple wavelength conversions occurring when a packet is buffered for contention resolution. We present the results as a function of the number of recirculations for on–off-keying (OOK) signal formats. While previous work has addressed this issue in terms of accumulated loss, we focus on accumulated intensity noise due to crosstalk and amplified spontaneous emission (ASE). We compare the routing performance of each architecture, and we point out that the AWG crosstalk and accumulated ASE noise during packet recirculation are both critical to the routing performance.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.4259) Fiber optics and optical communications : Networks, packet-switched

ToC Category:
Research Papers

History
Original Manuscript: September 9, 2011
Revised Manuscript: February 2, 2012
Manuscript Accepted: April 9, 2012
Published: April 30, 2012

Citation
Q. Xu, H. Rastegarfar, Y. Ben M’Sallem, A. Leon-Garcia, S. LaRochelle, and L. A. Rusch, "Analysis of Large-Scale Multi-Stage All-Optical Packet Switching Routers," J. Opt. Commun. Netw. 4, 412-425 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-5-412

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited