OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 6 — Jun. 1, 2012
  • pp: 522–532

Subcarrier Intensity Modulated Wireless Optical Communications With Rectangular QAM

Md. Zoheb Hassan, Xuegui Song, and Julian Cheng  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 6, pp. 522-532 (2012)
http://dx.doi.org/10.1364/JOCN.4.000522


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The average symbol error rate is studied for subcarrier intensity modulated wireless optical communication systems employing general order rectangular quadrature amplitude modulation. We consider three different turbulence channel models, i.e., the Gamma–Gamma channel, the K-distributed channel, and the negative exponential channel with different levels of turbulence. Closed-form error rate expressions are derived using a series expansion of the modified Bessel function. In addition, detailed truncation error analysis and asymptotic error rate analysis are also presented. Numerical results demonstrate that our series solutions are highly accurate and efficient.

© 2012 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: March 6, 2012
Revised Manuscript: May 5, 2012
Manuscript Accepted: May 6, 2012
Published: May 29, 2012

Citation
Md. Zoheb Hassan, Xuegui Song, and Julian Cheng, "Subcarrier Intensity Modulated Wireless Optical Communications With Rectangular QAM," J. Opt. Commun. Netw. 4, 522-532 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-6-522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol. 24, pp. 4750–4762, Dec.2006. [CrossRef]
  2. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 50, pp. 1293–1300, Aug.2002. [CrossRef]
  3. W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol. E76-B, pp. 1169–1177, Sept.1993.
  4. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 55, pp. 1598–1606, Aug.2007. [CrossRef]
  5. W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol. 2, pp. 16–23, Feb.2008. [CrossRef]
  6. W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol. 27, pp. 967–973, Apr.2009. [CrossRef]
  7. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun., vol. 59, pp. 1368–1377, May2011. [CrossRef]
  8. J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in Gamma–Gamma fading channels,” IEEE Photon. Technol. Lett., vol. 23, pp. 269–271, Feb.2011. [CrossRef]
  9. H. Samimi and P. Azmi, “Subcarrier intensity modulated free-space optical communications in K-distributed turbulence channels,” J. Opt. Commun. Netw., vol. 2, pp. 625–632, Aug.2010. [CrossRef]
  10. X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol. 16, pp. 540–543, Apr.2012. [CrossRef]
  11. M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser,” Electron. Lett., vol. 42, pp. 710–712, June2006. [CrossRef]
  12. N. Cvijetic and T. Wang, “WiMAX over free-space optics evaluating OFDM multi-subcarrier modulation in optical wireless channels,” in IEEE Sarnoff Symp., 27–28 Mar. 2006, pp. 1–4.
  13. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “LDPC coded OFDM over the atmospheric turbulence channel,” Opt. Express, vol. 15, pp. 6336–6350, May2007. [CrossRef] [PubMed]
  14. K. P. Peppas and C. K. Datsikas, “Average symbol error probability of general-order rectangular quadrature amplitude modulation of optical wireless communication systems over atmospheric turbulence channels,” J. Opt. Commun. Netw., vol. 2, pp. 102–110, Feb.2010. [CrossRef]
  15. G. K. Karagiannidis, “On the symbol error probability of general order rectangular QAM in Nakagami-m fading,” IEEE Commun. Lett., vol. 10, pp. 745–747, Nov.2006. [CrossRef]
  16. G. P. Agrawal, Fiber-Optical Communication Systems, 3rd ed.Wiley, New York, 2002.
  17. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol. 40, pp. 1554–1562, Aug.2001. [CrossRef]
  18. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. SPIE Press, Bellingham, WA, 2001.
  19. N. Wang and J. Cheng, “Moment-based estimation for the shape parameters of the Gamma–Gamma atmospheric turbulence model,” Opt. Express, vol. 18, pp. 12824–12831, June2010. [CrossRef] [PubMed]
  20. K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol. 54, pp. 604–607, Apr.2006. [CrossRef]
  21. M. Niu, J. Cheng, and J. F. Holtzman, “Error rate analysis of M-ary coherent free space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol. 59, pp. 664–668, Mar.2011. [CrossRef]
  22. H. A. Suraweera and J. Armstrong, “A simple and accurate approximation to the SEP of rectangular QAM in arbitrary Nakagami-m fading channels,” IEEE Commun. Lett., vol. 11, pp. 426–428, May2007. [CrossRef]
  23. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.Academic Press, San Diego, 2000.
  24. M. K. Simon, Digital Communication Over Fading Channel: A Unified Approach to Performance Analysis. John Wiley & Sons, Inc., Hoboken, NJ, 2004.
  25. The Wolfram Function Site, 2012 [Online]. Available: http://functions.wolfram.com/GammaBetaErf/Erfc/21/02/01/.
  26. M. Geller and E. W. Ng, “A table of integrals of the error function. II. Additions and corrections,” J. Res. Natl. Bur. Stand., vol. 75B, pp. 149–163, July–Dec.1971.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited