OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 9 — Sep. 1, 2012
  • pp: A69–A76

Quantum-Dash Mode-Locked Lasers for Tunable Wavelength Conversion on a 100 GHz Frequency Grid

Yousra Ben M’Sallem, Alexandre Shen, François Lelarge, Frédéric Pommereau, Dalila Make, Sophie LaRochelle, and Leslie Ann Rusch  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 4, Issue 9, pp. A69-A76 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



All-optical wavelength converters play a key role for next-generation high-bit-rate optical networks. A high-speed, simple, and compact wavelength converter can resolve contention, reduce wavelength blocking, and enable a multitude of new wavelength routing approaches. We propose the combination of a quantum-dash mode-locked laser (QD-MLL) with a frequency-selective filter to provide (two) tunable wavelength pumps for wavelength conversion of optical channels in a dual-pump four-wave-mixing (FWM) scheme. Such a converter is simple, practical, and offers a wide conversion range, modulation format transparency, and the potential for photonic integration. We examine the performance of the proposed scheme experimentally with a QD-MLL and manually tunable optical filters. Wavelength conversion is achieved via an extremely non-linear semiconductor optical amplifier (SOA), a commercial SOA with very high FWM efficiency. We achieved near −3 dB conversion efficiency across a 9.6 nm tuning range with a signal input power of −3 dBm and a pump input power of 2 dBm. We performed bit error rate (BER) measurement on a 5.6 nm conversion range and obtained error-free transmission (BER <109) with less than 2 dB power penalty.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(270.0270) Quantum optics : Quantum optics
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Enabling Optical Devices for Scalable Networks

Original Manuscript: February 29, 2012
Revised Manuscript: June 19, 2012
Manuscript Accepted: July 27, 2012
Published: August 21, 2012

Yousra Ben M’Sallem, Alexandre Shen, François Lelarge, Frédéric Pommereau, Dalila Make, Sophie LaRochelle, and Leslie Ann Rusch, "Quantum-Dash Mode-Locked Lasers for Tunable Wavelength Conversion on a 100 GHz Frequency Grid," J. Opt. Commun. Netw. 4, A69-A76 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol., vol. 14, pp. 942–954, June1996. [CrossRef]
  2. K. Stukjaer, C. Joergensen, S. Danielsen, B. Mikkelsen, M. Vaa, R. Pedersen, H. Povlsen, M. Schilling, K. Daub, K. Dutting, W. Idler, M. Klenk, E. Lach, G. Laube, K. Wunstel, P. Doussiere, A. Jourdan, F. Pommerau, G. Soulage, L. Goldstein, J. Emery, N. Vodjdani, F. Ratovelomanana, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Wavelength conversion devices and techniques,” in Proc. 22nd European Conf. on Optical Communication, Sept. 1996, vol. 4, pp. 33–40.
  3. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1061–1073, Sept.1998. [CrossRef]
  4. J. Gripp, J. Simsarian, J. LeGrange, P. Bernasconi, and D. Neilson, “Architectures, components, and subsystems for future optical packet switches,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 1394–1404, Sept.–Oct.2010. [CrossRef]
  5. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express, vol. 16, pp. 6957–6962, May2008. [CrossRef] [PubMed]
  6. Y. Geng, P. Andersen, T. Tokle, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 6 ×40 Gb/s DPSK WDM signal using FWM in a highly non-linear photonic crystal fiber,” in Proc. IEEE 31st European Conf. on Optical Communication, Sept. 2005, vol. 2, pp. 205–206.
  7. D. Wang, T. Cheng, Y. Yeo, Z. Xu, Y. Wang, G. Xiao, and J. Liu, “Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity,” J. Lightwave Technol., vol. 28, no. 24, pp. 3497–3505, 2010.
  8. S. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol., vol. 14, pp. 955–966, June1996. [CrossRef]
  9. S. Diez, C. Schmidt, R. Ludwig, H. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron., vol. 3, pp. 1131–1145, Oct.1997. [CrossRef]
  10. L.-Q. Guo and M. J. Connelly, “Signal-induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion,” J. Lightwave Technol., vol. 23, p. 4037, Dec.2005. [CrossRef]
  11. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express, vol. 12, pp. 361–366, Feb.2004. [CrossRef] [PubMed]
  12. J. Lacey, G. Pendock, and R. Tucker, “All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 8, pp. 885–887, July1996. [CrossRef]
  13. G. Contestabile, L. Banchi, E. Ciaramella, and M. Presi, “Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing,” J. Lightwave Technol., vol. 27, pp. 4256–4261, Oct.2009. [CrossRef]
  14. C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photon. Technol. Lett., vol. 17, pp. 633–635, Mar.2005. [CrossRef]
  15. J. Lacey, M. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol., vol. 16, pp. 2419–2427, Dec.1998. [CrossRef]
  16. A. Gnauck, R. Tkach, A. Chraplyvy, and T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol., vol. 26, pp. 1032–1045, May2008. [CrossRef]
  17. D. Van Thourhout, G. Sarlet, G. Morthier, and R. Baets, “Comparison of integrated multi-wavelength and (widely) tunable edge-emitting laser diodes,” Opt. Quantum Electron., vol. 34, no. 7, pp. 627–648, 2002. [CrossRef]
  18. J. Buus and E. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol., vol. 24, pp. 5–11, Jan.2006. [CrossRef]
  19. J. Simsarian, M. Larson, H. Garrett, H. Xu, and T. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol. 18, pp. 565–567, Feb.2006. [CrossRef]
  20. D. V. Thourhout, L. Zhang, W. Yang, B. Miller, N. Sauer, and C. Doerr, “Compact digitally tunable laser,” Photon. Technol. Lett., vol. 15, pp. 182–184, Feb.2003. [CrossRef]
  21. S.-L. Lee, C.-Y. Chien, H.-W. Tsao, and J. Wu, “Practical considerations of using tunable lasers for packet routing in multiwavelength optical networks,” in Proc. Int. Conf. on Parallel Processing Workshops, Oct. 2003, pp. 325–331.
  22. L. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, “Tunable semiconductor lasers: A tutorial,” J. Lightwave Technol., vol. 22, pp. 193–202, Jan.2004. [CrossRef]
  23. K. Shi, P. Anandarajah, D. Reid, F. Smyth, L. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in IEEE European Conf. on Lasers and Electro-Optics and the European Quantum Electronics Conf., June 2009, p. 1.
  24. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 111–124, Jan.–Feb.2007. [CrossRef]
  25. Y. Ben M’Sallem, Q. T. Le, L. Bramerie, Q.-T. Nguyen, E. Borgne, P. Besnard, S. LaRochelle, L. Rusch, and J.-C. Simon, “Quantum-dash mode-locked laser source for wavelength-tunable 56 Gbit/s DQPSK,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2010, pp. 1–3.
  26. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag., vol. 36, pp. 50–55, Dec.1998. [CrossRef]
  27. I. Tonkos, I. Zacharopoulos, E. Roditi, D. Syvridis, F. Girardin, L. Occhi, and A. Uskov, “Highly performing wavelength converter based on dual pump wave mixing in semiconductor optical amplifier,” in Proc. IEEE Lasers and Electro-Optics Society Annu. Meeting, Dec. 1998, vol. 1, pp. 71–72.
  28. Y. Hong, S. Bandyopadhyay, P. Spencer, and K. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron., vol. 39, pp. 1123–1128, Sept. 2003. [CrossRef]
  29. K. Otsubo, S. Tanaka, S. Tomabechi, K. Morito, and H. Kuwatsuka, “High efficiency, wide range and completely transparent wavelength conversion method using replicas generated by dual pump nearly-degenerated four-wave mixing in a Mach-Zehnder interferometer SOA,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., Mar. 2006, OWS7.
  30. A. D’ottavi, F. Girardin, L. Graziani, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing in semiconductor optical amplifiers: A practical tool for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 2, pp. 522–528, 1997. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited