OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 4, Iss. 9 — Sep. 1, 2012
  • pp: A8–A16

Electro-Absorption-Based Fast Photonic Integrated Circuit Sources for Next Network Capacity Scaling [Invited]

Christophe Kazmierski  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 4, Issue 9, pp. A8-A16 (2012)
http://dx.doi.org/10.1364/JOCN.4.0000A8


View Full Text Article

Enhanced HTML    Acrobat PDF (1387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Increasing component speed, throughput and efficiency inevitably leads to optoelectronic transmitters and receivers of more complexity, larger footprint, consumption and cost. Monolithic integration is known to help in solving these problems typical of discrete components. However, lowering of the cost, consumption and material usage must preserve high modulation performance especially while increasing the data rate. These issues are addressed by our new photonic integrated circuit technology on indium phosphide. The demonstrated laser transmitter circuits rely on electro-absorption modulators, one of the smallest and most energy-efficient electro-optic converters. By improving old and creating new component classes, this approach is expected to reduce dramatically their environmental footprint.

© 2012 OSA

OCIS Codes
(230.6080) Optical devices : Sources
(250.4110) Optoelectronics : Modulators
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Enabling Optical Devices for Scalable Networks

History
Original Manuscript: March 21, 2012
Revised Manuscript: June 7, 2012
Manuscript Accepted: June 8, 2012
Published: June 26, 2012

Citation
Christophe Kazmierski, "Electro-Absorption-Based Fast Photonic Integrated Circuit Sources for Next Network Capacity Scaling [Invited]," J. Opt. Commun. Netw. 4, A8-A16 (2012)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-4-9-A8


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kazmierski, “A technological platform for 10 Gb/s-100 Gb/s photonic sources [Invited],” in Frontiers in Optics, Rochester, NY, 19–24 October 2008, FTuA3.
  2. L. A. Coldren, E. J. Skogen, J. W. Raring, J. S. Barton, D. Lofgreen, L. Johansson, and J. T. Getty, “Active photonic integrated circuits [Invited],” in Int. Conf. on Indium Phosphide and Related Materials (IPRM), Glasgow, Scotland, 8–12 May 2005, pp. 160–162.
  3. J. Décobert, N. Dupuis, P. Y. Lagrée, N. Lagay, A. Ramdane, A. Ougazzaden, F. Poingt, C. Cuisin, and C. Kazmierski, “Modeling and characterization of AlGaInAs and related materials using selective area growth by metal–organic vapor-phase epitaxy,” J. Crystal Growth, vol. 298, pp. 28–31, 2007. [CrossRef]
  4. J. W. Raring and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 3–14, 2007. [CrossRef]
  5. E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron., vol. 11, pp. 343–355, 2005. [CrossRef]
  6. C. Jany, J. Decobert, F. Alexandre, A. Garreau, J.-G. Provost, O. Drisse, E. Derouin, F. Blache, J. Landreau, N. Lagay, F. Martin, D. Carpentier, and C. Kazmierski, “10 Gbit/s 1.55 µm 25 km transmission at 90 °C with new self thermally compensated AlGaInAs directly modulated laser,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, 27–29 Mar. 2007, JWA32.
  7. N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett., vol. 20, pp. 1808–1810, 2008. [CrossRef]
  8. C. Kazmierski, A. Konczykowska, F. Jorge, F. Blache, M. Riet, C. Jany, and A. Scavennec, “100 Gb/s operation of an AlGaInAs semi-insulating buried heterojunction EML,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 22–26 Mar. 2009, OThT7.
  9. I. Kang, S. Chandrasekhar, L. Buhl, P.-G. Bernasconi, X. Liu, C.-R. Giles, A. R Chraplivy, C. Kazmierski, N. Dupuis, J. Décobert, F. Alexandre, C. Jany, A. Garreau, J. Landreau, M. Rasras, M. Cappuzzo, L.-T. Gomez, Y.-F. Gomez, Y.-F. Chen, M.-P. Earnshaw, J. Lee, A. Leven, and C. Dorrer, “Direct 50-Gb/s RZ-DQPSK generation using hybrid photonic-integrated electroabsorption modulators,” in 34th European Conf. on Optical Communication (ECOC), 2008.
  10. O. Patard, K. Ławniczuk, R. Guillamet, N. Chimot, A. Garreau, and C. Kazmierski, “40 Gb/s operation of colorless reflective amplified modulators up to 85 °C,” in 16th European Conf. on Integrated Optics (ECIO), Barcelona, 18–20 Apr. 2012.
  11. I. Kang, S. Chandrasekhar, C. Kazmierski, M. Rasras, and N. Dupuis, “1650-km transmission of 50-Gb/s NRZ and RZ-DQPSK signals generated using an electroabsorption modulators-silica planar lightwave circuit hybrid integrated device,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 22–25 Mar. 2010, OMJ4.
  12. D. Carrara, C. Kazmierski, J.-G. Provost, R. Guillamet, R. Berruée, and A. Ramdane, “Novel electro-absorption based monolithic photonic integrated source for advanced modulations,” in 16th European Conf. on Integrated Optics (ECIO), Barcelona, 18–20 Apr. 2012.
  13. P. Chanclou, D. Torrientes, F. Chang, B. Charbonnier, and C. Kazmierski, “10 Gbit/s for next generation PON with electronic equalization using un-cooled 1.55 µm directly modulated laser,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 20–24 Sept. 2009, PostDeadline3.5.
  14. J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1.55 µm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett., vol. 6, no. 4, pp. 558–560, 1994. [CrossRef]
  15. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010. [CrossRef]
  16. H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 947–949, 2006. [CrossRef]
  17. K. Khalil, A. Thomas, E. Didier, M. Kamel, A. Guy, K. Christophe, J. Christophe, A.-B. Christelle, and C. Philippe, “First demonstration of dispersion limit improvement at 20 Gb/s with a dual electro-absorption modulated laser,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 4–8 Mar. 2012, OTh3F.1.
  18. J. Petit, D. Erasme, C. Kazmierski, C. Jany, J. Decobert, F. Alexandre, and N. Dupuis, “Enhanced 10-Gb/s NRZ transmission distance using dual modulation of an integrated electro-absorption modulated laser transmitter,” in Optical Fiber Communication Conf. (OFC), 2009, OThG2.
  19. Y. C. Chung, “Recent advancement in WDM PON technology,” in 27th European Conf. on Optical Communication (ECOC), 18–22 Sept. 2011, Th11.C4.
  20. A. Garreau, J. Decobert, C. Kazmierski, M.-C. Cuisin, J.-G. Provost, H. Sillard, F. Blache, D. Carpentier, J. Landreau, and P. Chanclou, “10 Gbit/s amplified reflective electroabsorption modulator for colourless access networks,” in Int. Conf. on Indium Phosphide and Related Materials (IPRM), 7–11 May 2006, pp. 168–170.
  21. D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10 Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in 35th European Conf. on Optical Communication (ECOC), 20–24 Sept. 2009, 8.6.3.
  22. O. Patard, F. Alexandre, F. Martin, J. Decobert, N. Lagay, R. Guillamet, and C. Kazmierski, “REAM-SOA integrating Ru doped InP current blocking layer,” in Int. Conf. on Indium Phosphide and Related Materials (IPRM), Berlin, 22–26 May 2011, Postdeadline.
  23. G. Girault, L. Bramerie, O. Vaudel, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” in 34th European Conf. on Optical Communication (ECOC), Brussels, Belgium, Sept. 2008, Poster session.
  24. E. Yamada, A. Ohki, N. Kikuchi, Y. Shibata, T. Yasui, K. Watanabe, H. Ishii, R. Iga, and H. Oohashi, “Full C-band 40-Gbit/s DPSK tunable transmitter module developed by hybrid integration of tunable laser and InP n-p-i-n Mach–Zehnder modulator,” in Optical Fiber Communication Conf. (OFC), Mar. 2010, OWU4.
  25. N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett., vol. 21, no. 12, pp. 787–789, June2009. [CrossRef]
  26. E. Yamada, Y. Shibata, K. Watanabe, T. Yasui, A. Ohki, H. Mawatari, S. Kanazawa, R. Iga, and H. Ishii, “Demonstration of 50 Gbit/s 16QAM signal generation by novel 16QAM generation method using a dual-drive InP Mach–Zehnder modulator,” in Optical Fiber Communication Conf. (OFC), Mar. 2011, OMU1.
  27. I. Kang, “Phase-shift-keying and on–off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Express, vol. 15, no. 4, pp. 1467–1473, 2007. [CrossRef] [PubMed]
  28. C. R. Doerr, L. Winzer, P. J. Zhang, L. Buhl, and N. J. Sauer, “Monolithic InP 16-QAM modulator,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, PDP20.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited