OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 1 — Jan. 1, 2013
  • pp: 92–103

Relay Selection Protocols for Relay-Assisted Free-Space Optical Systems

Nestor D. Chatzidiamantis, Diomidis S. Michalopoulos, Emmanouil E. Kriezis, George K. Karagiannidis, and Robert Schober  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 1, pp. 92-103 (2013)
http://dx.doi.org/10.1364/JOCN.5.000092


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate transmission protocols for relay-assisted free-space optical (FSO) systems, when multiple parallel relays are employed and there is no direct link between the source and the destination. As alternatives to all-active FSO relaying, where all the available relays transmit concurrently, we propose schemes that select only a single relay to participate in the communication between the source and the destination in each transmission slot. The selection is based on the channel state information obtained either from all or from the last used FSO links. Thus, the need for synchronization of the relays’ transmissions is avoided, while the slowly varying nature of the atmospheric channel is exploited. For the considered relay selection and all-active relaying schemes, novel closed-form expressions for the outage performance are derived, assuming the versatile Gamma–Gamma channel model. In addition, based on the derived analytical results, the problem of optimizing the optical power resources of the FSO links is addressed. Optimal and more computationally attractive suboptimal solutions are proposed that lead to a power efficient system design. Numerical results for equal and non-equal length FSO links illustrate the merits of the proposed relay selection protocols compared to the all-active scheme and demonstrate the significant power savings offered by the proposed power allocation schemes.

© 2013 OSA

OCIS Codes
(030.7060) Coherence and statistical optics : Turbulence
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: August 13, 2012
Revised Manuscript: October 9, 2012
Manuscript Accepted: November 14, 2012
Published: December 21, 2012

Citation
Nestor D. Chatzidiamantis, Diomidis S. Michalopoulos, Emmanouil E. Kriezis, George K. Karagiannidis, and Robert Schober, "Relay Selection Protocols for Relay-Assisted Free-Space Optical Systems," J. Opt. Commun. Netw. 5, 92-103 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-1-92


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing, 2002.
  2. L. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media. SPIE Press, 2005.
  3. X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 51, pp. 1233–1239, Aug.2003. [CrossRef]
  4. M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communication,” IEEE Trans. Commun., vol. 57, pp. 1119–1128, Apr.2009. [CrossRef]
  5. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun., vol. 50, pp. 1293–1300, Aug.2002. [CrossRef]
  6. E. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun., vol. 22, pp. 1896–1906, Nov.2004. [CrossRef]
  7. S. G. Wilson, M. Brandt-Pearce, C. Qianling, and J. H. Leveque, “Free-space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun., vol. 53, pp. 1402–1412, Aug.2005. [CrossRef]
  8. M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun., vol. 7, pp. 5441–5449, Dec.2008. [CrossRef]
  9. M. Kamiri and N. Nasiri-Kerari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightwave Technol., vol. 27, pp. 5639–5647, Dec.2009. [CrossRef]
  10. M. Kamiri and N. Nasiri-Kerari, “Free-space optical communications via optical amplify-and-forward relaying,” J. Lightwave Technol., vol. 29, pp. 242–248, Jan.2011. [CrossRef]
  11. C. Abou-Rjeily and A. Slim, “Cooperative diversity for free-space optical communications: transceiver design and performance analysis,” IEEE Trans. Commun., vol. 53, pp. 658–663, Mar.2011. [CrossRef]
  12. C. Abou-Rjeily and S. Haddad, “Cooperative FSO systems: Performance analysis and optimal power allocation,” J. Lighwave Technol., vol. 29, pp. 1058–1065, Apr.2011. [CrossRef]
  13. H. S. Nalwa, Handbook of Organic Electronics and Photonics. American Scientific Publishers, 2006.
  14. M. Yano, F. Yamagishi, and T. Tsuda, “Optical MEMS for photonic switching–compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks,” IEEE J. Sel. Topics Quantum Electron., vol. 11, pp. 383–394, Mar.2005. [CrossRef]
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed.Academic, 2007.
  16. T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over Gamma–Gamma atmospheric turbulence channels,” Electron. Lett., vol. 44, pp. 372–373, Feb.2008. [CrossRef]
  17. D. S. Michalopoulos and G. K. Karagiannidis, “Two-relay distributed switch and stay combining (DSSC),” IEEE Trans. Commun., vol. 56, pp. 1790–1794, Nov.2008. [CrossRef]
  18. N. Letzepis, I. Holland, and W. G. Cowley, “The Gaussian free space optical MIMO channel with Q-ary pulse position modulation,” IEEE Trans. Wireless Commun., vol. 27, pp. 1744–1753, May2008. [CrossRef]
  19. M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels, 2nd ed.John Wiley & Sons, New York, 2005.
  20. P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, G. K. Karagiannidis, and A. A. Rontogiannis, “On the performance analysis of digital communications over generalized-K fading channels,” IEEE Commun. Lett., vol. 10, pp. 353–355, May2006. [CrossRef]
  21. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed.McGraw Hill, 2002.
  22. D. J. T. Heatley, D. R. Wisely, I. Neild, and P. Cochrane, “Optical wireless: The story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, Dec.1998. [CrossRef]
  23. J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.
  24. B. Anderson, J. Jackson, and M. Sitharam, “Descartes’ rule of sign revisited,” Am. Math. Monthly, vol. 105, pp. 447–451, May1998. [CrossRef]
  25. E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma–Gamma fading,” IEEE Trans. Commun., vol. 57, pp. 1119–1128, Nov.2009. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited