OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 10 — Oct. 1, 2013
  • pp: A107–A118

Cognitive Dynamic Optical Networks [Invited]

Ignacio de Miguel, Ramón J. Durán, Tamara Jiménez, Natalia Fernández, Juan Carlos Aguado, Rubén M. Lorenzo, Antonio Caballero, Idelfonso Tafur Monroy, Yabin Ye, Andrzej Tymecki, Ioannis Tomkos, Marianna Angelou, Dimitrios Klonidis, Antonio Francescon, Domenico Siracusa, and Elio Salvadori  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 10, pp. A107-A118 (2013)
http://dx.doi.org/10.1364/JOCN.5.00A107


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
OFC/NFOEC 2013

History
Original Manuscript: May 1, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: July 20, 2013
Published: September 12, 2013

Citation
Ignacio de Miguel, Ramón J. Durán, Tamara Jiménez, Natalia Fernández, Juan Carlos Aguado, Rubén M. Lorenzo, Antonio Caballero, Idelfonso Tafur Monroy, Yabin Ye, Andrzej Tymecki, Ioannis Tomkos, Marianna Angelou, Dimitrios Klonidis, Antonio Francescon, Domenico Siracusa, and Elio Salvadori, "Cognitive Dynamic Optical Networks [Invited]," J. Opt. Commun. Netw. 5, A107-A118 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-10-A107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie, “Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives,” IEEE Commun. Mag., vol.  44, pp. 51–57, Dec. 2006. [CrossRef]
  2. Z. Movahevic, M. Ayari, R. Langar, and G. Pujolle, “A survey of autonomic network architectures and evaluation criteria,” IEEE Commun. Surv. Tutorials, vol.  14, no. 2, pp. 464–490, 2012. [CrossRef]
  3. J. Strassner, “The role of autonomic networking in cognitive networks,” in Cognitive Networks: Towards Self-Aware Networks, Q. H. Mahmoud, Ed. Wiley, 2007, pp. 23–52.
  4. Q. H. Mahmoud, Ed., Cognitive Networks: Towards Self-Aware Networks. Wiley, 2007.
  5. I. de Miguel, R. J. Durán, R. M. Lorenzo, A. Caballero, I. Tafur Monroy, Y. Ye, A. Tymecki, I. Tomkos, M. Angelou, D. Klonidis, A. Francescon, D. Siracusa, and E. Salvadori, “Cognitive dynamic optical networks,” in Proc. OFC/NFOEC, 2013, paper OW1H.1.
  6. D. Kliazovich, F. Granelli, and N. L. S. Da Fonseca, “Architectures and cross-layer design for cognitive networks,” in Handbook of Sensor Networks. World Scientific, 2010, ch. 1.
  7. G. S. Zervas and D. Simeonidou, “Cognitive optical networks: Need, requirements and architecture,” in Proc. ICTON, 2010, paper We.C1.3.
  8. W. Wei, C. Wang, and J. Yu, “Cognitive optical networks: Key drivers, enabling techniques, and adaptive bandwidth services,” IEEE Commun. Mag., vol.  50, pp. 106–113, Jan. 2012. [CrossRef]
  9. EU FP7 CHRON project [Online]. Available: http://www.ict-chron.eu .
  10. I. Tomkos, M. Angelou, R. J. Durán Barroso, I. de Miguel, R. M. Lorenzo Toledo, D. Siracusa, E. Salvadori, A. Tymecki, Y. Ye, and I. Tafur Monroy, “Next generation flexible and cognitive heterogeneous optical networks,” in The Future Internet—Future Internet Assembly 2012: From Promises to Reality. Springer, 2012, pp. 225–236.
  11. S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in Proc. ECOC, 2012, paper Tu.1.D.1.
  12. S. J. Vaughan-Nichols, “OpenFlow: The next generation of the network?” Computer, vol.  44, no. 8, pp. 13–15, 2011. [CrossRef]
  13. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010. [CrossRef]
  14. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag., vol.  50, no. 2, pp. s12–s20, Feb. 2012. [CrossRef]
  15. L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: An OpenFlow-based control plane for spectrum sliced elastic optical path networks,” Opt. Express, vol.  21, no. 4, pp. 4194–4204, Feb. 2013. [CrossRef]
  16. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express, vol.  21, no. 5, pp. 5487–5498, Mar. 2013. [CrossRef]
  17. R. J. Durán, I. de Miguel, D. Sánchez, N. Fernández, T. Jiménez, J. C. Aguado, V. K. Yedugundla, M. Angelou, N. Merayo, P. Fernández, N. Atallah, R. M. Lorenzo, A. Francescon, I. Tomkos, and E. J. Abril, “A cognitive decision system for heterogeneous reconfigurable optical networks,” in Proc. Future Network & Mobile Summit, 2012.
  18. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, pp. 138–145, Aug. 2010. [CrossRef]
  19. N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag., vol.  50, pp. 66–72, May 2012. [CrossRef]
  20. H. Y. Choi, L. Liu, T. Tsuritani, and I. Morita, “Demonstration of BER-adaptive WSON employing flexible transmitter/receiver with an extended OpenFlow-based control plane,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 119–121, Jan. 2013. [CrossRef]
  21. G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Commun. Surv. Tutorials, vol.  15, no. 1, pp. 65–87, 2013. [CrossRef]
  22. A. Autenrieth, J.-P. Elbers, M. Eiselt, K. Grobe, B. Teipen, and H. Griesser, “Evaluation of technology options for software-defined transceivers in fixed WDM grid versus flexible WDM grid optical transport networks,” in Proc. 14th ITG Symp. on Photonic Networks, May 2013.
  23. C. C. K. Chan, Optical Performance Monitoring—Advanced Techniques for Next-Generation Photonic Networks. Elsevier, 2010.
  24. D. Dahan, U. Mahlab, A. Teixeira, I. Zacharopoulos, and I. Tomkos, “Optical performance monitoring for translucent/transparent optical networks,” IET Optoelectron., vol.  5, no. 1, pp. 1–18, Feb. 2011. [CrossRef]
  25. F. Pittalà, F. N. Hauske, Y. Ye, N. G. Gonzalez, and I. T. Monroy, “Joint PDL and in-band OSNR monitoring supported by data-aided channel estimation,” in Proc. OFC, Mar. 4–8, 2012.
  26. M. Kuschnerov, M. Chouayakh, K. Piyawanno, B. Spinnler, E. de Man, P. Kainzmaier, M. S. Alfiad, A. Napoli, and B. Lankl, “Data-aided versus blind single-carrier coherent receivers,” IEEE Photon. J., vol.  2, no. 3, pp. 387–403, June 2010. [CrossRef]
  27. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1180–1192, Sept.–Oct. 2010. [CrossRef]
  28. K. Kompella and Y. Rekhter, “OSPF extensions in support of generalized multi-protocol label switching (GMPLS),” , 2005.
  29. J. Lang, “Link management protocol (LMP),” , 2005.
  30. K. Shimizu, R. Hayashi, I. Inoue, and K. Shiomoto, “Plug and play techniques for GMPLS control plane configuration,” in Proc. IEICE COIN, 2008.
  31. I. Rodríguez, R. J. Durán, D. Siracusa, I. de Miguel, A. Francescon, J. C. Aguado, E. Salvadori, and R. M. Lorenzo, “Minimization of the impact of the TED inaccuracy problem in PCE-based networks by means of cognition,” accepted for presentation at ECOC, paper We.4.E.2.
  32. J. Case, M. Fedor, M. Schoffstall, and J. Devin, “A simple network management protocol,” , 1990.
  33. S. Waldbusser, “Remote network monitoring management information base version 2,” , 2006.
  34. D. Siracusa, E. Salvadori, A. Francescon, A. Zanardi, M. Angelou, D. Klonidis, I. Tomkos, D. Sánchez, R. J. Durán, and I. de Miguel, “A control plane framework for future cognitive heterogeneous optical networks,” in Proc. ICTON, 2012.
  35. L. Berger, “Generalized multi-protocol label switching (GMPLS) signaling resource reservation protocol—traffic engineering (RSVP-TE) extensions,” , 2003.
  36. L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and performance evaluation of OpenFlow-based wavelength path control in transparent optical networks,” Opt. Express, vol.  19, no. 27, pp. 26578–26593, 2011. [CrossRef]
  37. A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , 2006.
  38. J.-P. Vasseur and J. L. Le Roux, “Path computation element (PCE) communication protocol (PCEP),” , 2009.
  39. Z. Ali, S. Sivabalan, C. Filsfils, R. Varga, and V. Lopez, “Path computation element communication protocol (PCEP): Extensions for remote-initiated GMPLS LSP setup,” IETF draft (draft-ali-pce-remote-initiated-gmpls-lsp-00.txt), 2013.
  40. S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet and circuit network convergence with OpenFlow,” in Proc. OFC/NFOEC, 2010, paper OTuG.1.
  41. I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.
  42. T. Jiménez, J. C. Aguado, I. de Miguel, R. J. Durán, M. Angelou, N. Merayo, P. Fernández, R. M. Lorenzo, I. Tomkos, and E. J. Abril, “A cognitive quality of transmission estimator for core optical networks,” J. Lightwave Technol., vol.  31, no. 6, pp. 942–951, Mar. 2013. [CrossRef]
  43. A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and system approaches,” AI Comm., vol.  7, no. 1, pp. 39–59, 1994.
  44. S. Azodolmoky, J. Perelló, M. Angelou, F. Agraz, L. Velasco, S. Spadaro, Y. Pointurier, A. Francescon, C. V. Saradhi, P. Kokkinos, E. Varvarigos, S. Al Zahr, M. Gagnaire, M. Gunkel, D. Klonidis, and I. Tomkos, “Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 439–448, 2011. [CrossRef]
  45. A. Mokhtar and M. Azizoglu, “Adaptive wavelength routing in all-optical networks,” IEEE/ACM Trans. Netw., vol.  6, no. 2, pp. 197–206, Apr. 1998. [CrossRef]
  46. E. Palkopolou, I. Stiakogiannakis, D. Klonidis, T. Jiménez, N. Fernández, J. C. Aguado, J. López, Y. Ye, and I. Tomkos, “Cognitive Heterogeneous Reconfigurable Optical Network: A techno-economic evaluation,” in Proc. Future Network and Mobile Summit, 2013.
  47. N. Fernández, R. J. Durán, I. de Miguel, N. Merayo, J. C. Aguado, P. Fernández, T. Jiménez, I. Rodríguez, D. Sánchez, R. M. Lorenzo, E. J. Abril, M. Angelou, and I. Tomkos, “Survivable and impairment-aware virtual topologies for reconfigurable optical networks: A cognitive approach,” in Proc. RNDM, 2012, pp. 183–189.
  48. N. Fernández, R. J. Durán, E. Palkopoulou, I. de Miguel, I. Stiakogiannakis, N. Merayo, I. Tomkos, and R. M. Lorenzo, “Techno-economic advantages of cognitive virtual topology design,” accepted for presentation at ECOC, paper Tu.3.E.6.
  49. N. Fernández, R. J. Durán, E. Palkopoulou, I. de Miguel, I. Stiakogiannakis, N. Merayo, I. Tomkos, and R. M. Lorenzo, “Virtual topology design and reconfiguration using cognition: Performance evaluation in case of failure,” accepted for presentation at RNDM.
  50. N. Guerrero Gonzalez, D. Zibar, and I. Tafur Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in Proc. ECOC, 2010, paper P6.11.
  51. G. Zervas, K. Banias, B. R. Rofoee, N. Amaya, and D. Simeonidou, “Multi-core, multi-band and multi-dimensional cognitive optical networks: An architecture on demand approach,” in Proc. ICTON, 2012.
  52. J. Praveen, B. Praveen, T. Venkatesh, Y. V. Kiran, and C. S. R. Murthy, “A first step toward autonomic optical burst switched networks,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 94–105, Dec. 2006. [CrossRef]
  53. Y. V. Kiran, T. Venkatesh, and C. S. R. Murthy, “A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 18–26, Dec. 2007. [CrossRef]
  54. L. Valcarenghi, “Cognitive PONs: A novel approach toward energy efficiency,” in Proc. Asia Communications and Photonics Conference, Nov. 2012, paper ATh1D.1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited