OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 10 — Oct. 1, 2013
  • pp: A119–A126

Demonstration of a 40 Gb/s Wavelength-Reused WDM-PON Using Coding and Equalization [Invited]

Qi Guo and An V. Tran  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 10, pp. A119-A126 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength-division-multiplexed passive optical network (WDM-PON) has been generally regarded as a promising solution to the next-generation access network that will be required to deliver services over 40Gb/s. However, fiber dispersion often limits the capacity and reach of WDM-PONs. Compared with dispersion compensation fiber, which is bulky and expensive with significant power loss, digital signal processing is a more suitable way to mitigate chromatic dispersion in PONs. Furthermore, expense is a critical concern in the WDM-PON, due to its need for a large number of lasers and a complex wavelength control mechanism. One practical solution is to reuse the downstream (DS) signal as the carrier for the upstream (US) modulation. In this case, the residual DS signal after remodulation can seriously degrade US transmission. In addition, system performance can be deteriorated by the unwanted reflection as uplinks and downlinks share one wavelength. In this paper, we propose using modified duobinary (MD) coding in the DS to improve its dispersion tolerance and reduce the crosstalk between DS and US induced by remodulation and reflection. MD is a correlative level code that can reduce signal bandwidth and achieve DC balance. We demonstrate a 15 km WDM-PON delivering a 40Gb/s MD-coded signal in the downlink and a 10Gb/s on–off keying signal in the uplink. Compared with no coding, the maximal allowable extinction ratio of the DS signal (ERd) is improved by 4 dB. Moreover, the reflection tolerance of the uplink and downlink is enhanced by 5 and 4 dB, respectively. In addition, investigations on the use of different equalizers in the DS to further suppress fiber dispersion confirm that the superior performance of nonlinear equalization in MD-coded transmission and that the network reach can be extended to 25 km by a nonlinear decision feedback equalizer.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4250) Fiber optics and optical communications : Networks

ToC Category:

Original Manuscript: May 8, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 16, 2013
Published: September 18, 2013

Qi Guo and An V. Tran, "Demonstration of a 40 Gb/s Wavelength-Reused WDM-PON Using Coding and Equalization [Invited]," J. Opt. Commun. Netw. 5, A119-A126 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Koonen, “Trends in optical access and in building networks,” in Proc. ECOC, Brussels, Belgium, 2008, paper We2.A.1.
  2. P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.
  3. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, 2013. [CrossRef]
  4. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008. [CrossRef]
  5. I. N. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10 Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper OWG2.
  6. Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011. [CrossRef]
  7. Q. Guo and A. V. Tran, “Improving performance of MLSE in RSOA-based WDM-PON by partial response signaling,” Opt. Express, vol.  19, no. 26, pp. B181–B190, Nov. 2011. [CrossRef]
  8. W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006. [CrossRef]
  9. Z. W. Xu, Y. Z. Wen, W. D. Zhong, M. Attygalle, X. F. Cheng, Y. X. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometric filter for carrier-reuse upstream transmission,” J. Lightwave Technol., vol.  25, pp. 3669–3677, Dec. 2007. [CrossRef]
  10. T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006. [CrossRef]
  11. Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.
  12. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw., vol.  6, pp. 624–630, June 2007. [CrossRef]
  13. K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.
  14. Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.
  15. Q. Guo and A. V. Tran, “Performance enhancement in RSOA-based WDM passive optical networks using level coding,” J. Lightwave Technol., vol.  31, no. 1, pp. 67–73, 2013. [CrossRef]
  16. K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol., vol.  15, no. 8, pp. 1530–1537, 1997. [CrossRef]
  17. Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.
  18. C. Xia and W. Rosenkranz, “Performance enhancement for duobinary modulation through nonlinear electrical equalization,” in Proc. ECOC, Glasgow, UK, 2005, paper Tu4.2.3.
  19. C. Xia and W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol., vol.  25, no. 4, pp. 996–1001, 2007. [CrossRef]
  20. Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012. [CrossRef]
  21. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol.  COM-12, pp. 128–135, 1964.
  22. T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.
  23. X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.
  24. A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999. [CrossRef]
  25. Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.
  26. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lazaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express, vol.  17, pp. 5008–5013, 2009. [CrossRef]
  27. W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited