OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 11 — Nov. 1, 2013
  • pp: 1202–1214

Constraint Routing and Regenerator Site Concentration in ROADM Networks

Balagangadhar G. Bathula, Rakesh K. Sinha, Angela L. Chiu, Mark D. Feuer, Guangzhi Li, Sheryl L. Woodward, Weiyi Zhang, Robert Doverspike, Peter Magill, and Keren Bergman  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 11, pp. 1202-1214 (2013)
http://dx.doi.org/10.1364/JOCN.5.001202


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Advances in the development of colorless and nondirectional reconfigurable optical add–drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installing a regenerator only when a circuit needs them, predeployment of regenerators in specific sites will allow service providers to achieve rapid provisioning such as bandwidth-on-demand service and fast restoration. Concentrating the predeployment of regenerators in a subset of ROADM sites will achieve high utilization and reduces the network operational costs. We prove the resulting optimization problem is NP-hard and provide the proof. We present an efficient heuristic for this problem that takes into account both the cost of individual circuits (regenerator cost and transmission line system cost) and the number of regenerator sites. We validate our heuristic approach with integer linear programming (ILP) formulations for a small network. Using specific network examples, we show that our heuristic has near-optimal performance under most studied scenarios and cost models. We further enhance the heuristic to incorporate the probability of demand for each circuit. This enables a reduction in the number of regenerator sites by allowing circuits to use costlier paths if they have lower probability of being needed. We also evaluate the heuristic to determine the extra regenerator sites required to support diverse routing. In this paper, we provide detailed analysis, pseudocodes, and proofs for the models presented in our previous work [Nat. Fiber Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on Design of Reliable Communication Networks (DRCN), 2013, 139] and compare the heuristic results with ILP for a small-scale network topology.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4256) Fiber optics and optical communications : Networks, network optimization
(060.4257) Fiber optics and optical communications : Networks, network survivability

ToC Category:
Research Papers

History
Original Manuscript: May 30, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: August 19, 2013
Published: October 23, 2013

Virtual Issues
November 26, 2013 Spotlight on Optics

Citation
Balagangadhar G. Bathula, Rakesh K. Sinha, Angela L. Chiu, Mark D. Feuer, Guangzhi Li, Sheryl L. Woodward, Weiyi Zhang, Robert Doverspike, Peter Magill, and Keren Bergman, "Constraint Routing and Regenerator Site Concentration in ROADM Networks," J. Opt. Commun. Netw. 5, 1202-1214 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-11-1202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gerber and R. Doverspike, “Traffic types and growth in backbone networks,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, Mar. 2011, pp. 1–3.
  2. J. Simmons, E. L. Goldstein, and A. A. M. Saleh, “On the value of wavelength-add/drop in WDM rings with uniform traffic,” in Nat. Fiber Optic Engineers Conf., San Jose, CA, Feb. 1998, pp. 361–362.
  3. W. Van Parys, P. Arijs, O. Antonis, and P. Demeester, “Quantifying the benefits of selective wavelength regeneration in ultra long-haul WDM networks,” in Optical Fiber Communication Conf. and Exhibit, Anaheim, CA, Mar. 2001, vol. 2, paper TuT4.
  4. M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications. Waltham, MA: Academic, 2008, pp. 293–343.
  5. A. A. Mahimkar, A. Chiu, R. Doverspike, M. Feuer, P. Magill, E. Mavrogiorgis, J. Pastor, V. Sethi, D. Xu, S. Woodward, and J. Yates, “Outage detection and dynamic re-provisioning in GRIPhoN: A globally reconfigurable intelligent photonic network,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, Mar. 2012, paper NM2F.5.
  6. S. Woodward, M. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, Feb. 2012. [CrossRef]
  7. X. Zhang, M. Birk, A. Chiu, R. Doverspike, M. Feuer, P. Magill, E. Mavrogiorgis, J. Pastor, S. Woodward, and J. Yates, “Bridge-and-roll demonstration in GRIPhoN (Globally Reconfigurable Intelligent Photonic Network),” in Nat. Fiber Optic Engineers Conf., San Diego, CA, Mar. 2010, pp. 1–3.
  8. A. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. Gannett, J. Jackel, G. Kim, J. Klincewicz, T. Kwon, G. Li, P. Magill, J. Simmons, R. Skoog, J. Strand, A. Lehmen, B. Wilson, S. Woodward, and D. Xu, “Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks [Invited],” J. Opt. Commun. Netw., vol.  4, no. 1, pp. 1–14, Jan. 2012. [CrossRef]
  9. M. Feuer, S. Woodward, I. Kim, P. Palacharla, X. Wang, D. Bihon, B. Bathula, W. Zhang, R. Sinha, G. Li, and A. Chiu, “Simulations of a service velocity network employing regenerator site concentration,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, Mar. 2012, paper NTu2J.5.
  10. M. Flammini, A. Marchetti-Spaccamela, G. Monaco, L. Moscardelli, and S. Zaks, “On the complexity of the regenerator placement problem in optical networks,” in Proc. 2nd Annu. Symp. Parallelism Algorithms and Architectures (SPAA), 2009, pp. 154–162.
  11. S. Chen, I. Ljubic, and S. Raghavan, “The generalized regenerator location problem,” in Proc. Int. Network Optimization Conf., 2009, pp. 1–32.
  12. S. Chen, I. Ljubic, and S. Raghavan, “The regenerator placement problem,” Networks, vol.  55, no. 3, pp. 205–220, 2010.
  13. A. Duarte, R. Martí, and M. G. C. Resende, “Randomized heuristics for the regenerator location problem,” Optimization Online, 2010. [Online]. Available: http://www.optimization-online.org/DB_HTML/2010/08/2706.html .
  14. M. Flammini, A. Marchetti-Spaccamela, G. Monaco, L. Moscardelli, and S. Zaks, “On the complexity of the regenerator placement problem in optical networks,” IEEE/ACM Trans. Netw., vol.  19, no. 2, pp. 498–511, Apr. 2011. [CrossRef]
  15. G. Shen, W. Grover, T. Cheng, and S. Bose, “Sparse placement of electronic switching nodes for low blocking in translucent optical networks,” J. Opt. Netw., vol.  1, no. 12, pp. 424–441, Dec. 2002.
  16. X. Yang and B. Ramamurthy, “Sparse regeneration in translucent wavelength-routed optical networks: Architecture, network design and wavelength routing,” Photon. Netw. Commun., vol.  10, pp. 39–53, July 2005.
  17. B. G. Bathula, R. Sinha, A. Chiu, M. Feuer, G. Li, S. Woodward, W. Zhang, K. Bergman, I. Kim, and P. Palacharla, “On concentrating regenerator sites in ROADM networks,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, Mar. 2012, paper NW3F.6.
  18. B. G. Bathula, R. K. Sinha, A. L. Chiu, M. D. Feuer, G. Li, S. L. Woodward, W. Zhang, R. Doverspike, P. Magill, and K. Bergman, “Cost optimization using regenerator site concentration and routing in ROADM networks [Invited],” in 9th Int. Conf. Design of Reliable Communication Networks (DRCN), Budapest, Hungary, Mar. 2013, pp. 139–147.
  19. M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
  20. S. Rai, C. F. Su, and B. Mukherjee, “On provisioning in all-optical networks: An impairment-aware approach,” IEEE/ACM Trans. Netw., vol.  17, no. 6, pp. 1989–2001, Dec. 2009. [CrossRef]
  21. C. Gao, H. Cankaya, A. Patel, J. Jue, X. Wang, Q. Zhang, P. Palacharla, and M. Sekiya, “Survivable impairment-aware traffic grooming and regenerator placement with connection-level protection,” J. Opt. Commun. Netw., vol.  4, no. 3, pp. 259–270, Mar. 2012. [CrossRef]
  22. X. Yang, L. Shen, and B. Ramamurthy, “Survivable lightpath provisioning in WDM mesh networks under shared path protection and signal quality constraints,” J. Lightwave Technol., vol.  23, no. 4, pp. 1556–1567, Apr. 2005. [CrossRef]
  23. A. Chiu, G. Choudhury, G. Clapp, R. Doverspike, J. Gannett, J. Klincewicz, G. Li, R. Skoog, J. Strand, A. Von Lehmen, and D. Xu, “Network design and architectures for highly dynamic next-generation IP-over-optical long distance networks,” J. Lightwave Technol., vol.  27, no. 12, pp. 1878–1890, June 2009. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited