OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 12 — Dec. 1, 2013
  • pp: 1361–1372

UltraFlow Access Testbed: Experimental Exploration of Dual-Mode Access Networks

Shuang Yin, Ahmad R. Dhaini, Thomas Shunrong Shen, Benjamin A. Detwiler, Marc De Leenheer, Talip Ucar, and Leonid G. Kazovsky  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 12, pp. 1361-1372 (2013)
http://dx.doi.org/10.1364/JOCN.5.001361


View Full Text Article

Enhanced HTML    Acrobat PDF (1954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electrical packet switching is well known as a flexible solution for small data transfers, whereas optical flow switching (OFS) might be an effective solution for large Internet file transfers. The UltraFlow project, a joint effort of three universities, Stanford, Massachusetts Institute of Technology, and University of Texas–Dallas, aims at providing an efficient dual-mode solution (i.e., IP and OFS) to the current network. In this paper, we propose and experimentally demonstrate UltraFlow Access, a novel optical access network that enables dual-mode service to the end users: IP and OFS. The new architecture cooperates with legacy passive optical networks (PONs) to provide both IP and novel OFS services. The latter is facilitated by a novel optical flow network unit (OFNU) that we have proposed, designed, and experimentally demonstrated. Different colored and colorless OFNU designs are presented, and their impact on the network performance is explored. Our testbed experiments demonstrate concurrent bidirectional 1.25 Gbps IP and 10 Gbps per-wavelength Flow error-free communication delivered over the same infrastructure. The support of intra-PON OFS communication, that is, between two OFNUs in the same PON, is also explored and experimentally demonstrated.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications
(060.4253) Fiber optics and optical communications : Networks, circuit-switched
(060.6718) Fiber optics and optical communications : Switching, circuit

ToC Category:
Research Papers

History
Original Manuscript: May 15, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 27, 2013
Published: November 21, 2013

Citation
Shuang Yin, Ahmad R. Dhaini, Thomas Shunrong Shen, Benjamin A. Detwiler, Marc De Leenheer, Talip Ucar, and Leonid G. Kazovsky, "UltraFlow Access Testbed: Experimental Exploration of Dual-Mode Access Networks," J. Opt. Commun. Netw. 5, 1361-1372 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-12-1361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Optical flow switching networks,” Proc. IEEE, vol.  100, no. 5, pp. 1079–1091, 2012. [CrossRef]
  2. V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.
  3. B. Ganguly and V. W. S. Chan, “A scheduled approach to optical flow switching in the ONRAMP optical access network testbed,” in Optical Fiber Communication Conf., Anaheim, CA, 2002, paper WG2.
  4. L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.
  5. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, 2007. [CrossRef]
  6. J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007. [CrossRef]
  7. “Spectral grids for WDM applications: DWDM frequency grid,” , Feb. 2012.
  8. K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008. [CrossRef]
  9. “Gigabit-capable passive optical networks (GPON): General characteristics,” , Mar. 2008.
  10. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003. [CrossRef]
  11. X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004. [CrossRef]
  12. C. W. Chow, C. S. Wong, and H. K. Tsang, “Optical packet labeling based on simultaneous polarization shift keying and amplitude shift keying,” Opt. Lett., vol.  29, no. 16, pp. 1861–1863, 2004. [CrossRef]
  13. Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005. [CrossRef]
  14. Y.-M. Lin, M. C. Yuang, S.-L. Lee, and W. I. Way, “Using superimposed ASK label in a 10-Gb/s multihop all-optical label swapping system,” J. Lightwave Technol., vol.  22, no. 2, pp. 351–361, 2004. [CrossRef]
  15. L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993. [CrossRef]
  16. “Gigabit-capable passive optical networks: General characteristics,” , Mar. 2008.
  17. H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003, ch. 9.
  18. M. S. Kiaei, L. Meng, C. Assi, and M. Maier, “Efficient scheduling and grant sizing methods for WDM PONs,” J. Lightwave Technol., vol.  28, no. 13, pp. 1922–1931, 2010. [CrossRef]
  19. G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.
  20. L. Zhang and V. W. S. Chan, “Fast scheduling for optical flow switching,” presented at the IEEE Global Telecommunications Conf. (GLOBECOM), Miami, FL, Dec. 6–10, 2010.
  21. Z. Rosberg, J. Li, F. Li, and M. Zukerman, “Flow scheduling in optical flow switched (OFS) networks under transient conditions,” J. Lightwave Technol., vol.  29, no. 21, pp. 3250–3264, Nov. 2011. [CrossRef]
  22. J. Prat, Next-Generation FTTH Passive Optical Networks.Springer, 2008, ch. 4.
  23. M. Fujiwara, J.-I. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  24, no. 2, pp. 740–746, 2006. [CrossRef]
  24. H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996. [CrossRef]
  25. C. Arellano, K.-D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscatterng in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, no. 1, pp. 12–18, 2009. [CrossRef]
  26. E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994. [CrossRef]
  27. G. P. Agrawal, Fiber-Optic Communication Systems. Wiley, 2010, chs. 4 and 7.
  28. F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited