OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 2 — Feb. 1, 2013
  • pp: 104–115

Cost Feasibility Analysis of Translucent Optical Networks With Shared Wavelength Converters

Oscar Pedrola, Davide Careglio, Miroslaw Klinkowski, Josep Solé-Pareta, and Keren Bergman  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 2, pp. 104-115 (2013)
http://dx.doi.org/10.1364/JOCN.5.000104


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Translucent optical networks have emerged as potential yet feasible candidates to bridge the gap between the opaque and transparent network architectures. By allowing electrical 3R signal regeneration only at selected points in the network, translucent architectures represent a cost-effective, power-efficient solution. Concurrently, forecasts predicting highly dynamic traffic patterns make it crucial for next-generation transport networks to engage highly agile technologies that include sub-wavelength switching (SWS). In translucent SWS networks, contention resolution is achieved through the still technologically immature all-optical wavelength converters (WCs). Since WCs are expected to be expensive, power-consuming devices, there has been significant research effort on devising WC-sharing architectures, which aim at minimizing the number of these devices in the network. WC sharing, however, requires complex switching fabrics that involve a much higher number of optical gates and stronger degradation due to physical layer impairments (more electrical 3R regenerators). It is clear, then, that the technological interest in WC-sharing architectures mainly depends on the cost trade-offs existing between these three components. For this reason, in this work, we carry out a comprehensive cost feasibility analysis of translucent networks based on asynchronous WC-sharing packet switches. After modeling a set of translucent WC-sharing switching fabrics, we assess their performance in an isolated node scenario in terms of the number of WCs and optical gates required. Given the results obtained, we select the shared-per-node (SPN) architecture to compare its hardware requirements with those of a network based on dedicated WC nodes (i.e., one WC per wavelength and input port). To this end, an iterative simulation algorithm is used to dimension translucent SWS networks considering a broad range of continental-scale topologies. The results are first analyzed using relative cost values, and finally the viability/feasibility of WC-sharing schemes is discussed considering state-of-the-art technology. Our main conclusion is that, for SPN-based architectures to become cost effective, the cost of WCs has to be at least two orders of magnitude higher than that of the optical gate and similar to or lower than that of the electrical 3R regenerator.

© 2013 OSA

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Research Papers

History
Original Manuscript: August 28, 2012
Revised Manuscript: November 12, 2012
Manuscript Accepted: November 25, 2012
Published: January 7, 2013

Citation
Oscar Pedrola, Davide Careglio, Miroslaw Klinkowski, Josep Solé-Pareta, and Keren Bergman, "Cost Feasibility Analysis of Translucent Optical Networks With Shared Wavelength Converters," J. Opt. Commun. Netw. 5, 104-115 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-2-104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sygletos, I. Tomkos, and J. Leuthold, “Technological challenges on the road toward transparent networking,” J. Opt. Netw., vol. 7, no. 4, pp. 321–350, Apr.2008. [CrossRef]
  2. G. Ellinas, J.-F. Labourdette, S. Chaudhuri, J. Walker, E. Goldstein, K. Bala, S. Chaudhuri, and L. Lin, “Network control and management challenges in opaque networks utilizing transparent optical switches,” IEEE Commun. Mag., vol. 42, no. 2, pp. 16–24, Feb.2004. [CrossRef]
  3. J. Solé-Pareta, S. Subramaniam, D. Careglio, and S. Spadaro, “Cross-layer approaches for planning and operating impairment-aware optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1118–1129, May2012, Special Issue on the Evolution of Optical Networks. [CrossRef]
  4. B. Ramamurthy, H. Feng, D. Datta, J. Heritage, and B. Mukherjee, “Transparent vs. opaque vs. translucent wavelength-routed optical networks,” in Optical Fiber Communication Conf. and the Int. Conf. on Integrated Optics and Optical Fiber Communication (OFC/IOOC), 1999, vol. 1, pp. 59–61.
  5. Y. Huang, X. Lei, I. Glesk, V. Baby, L. Bin, and P. Prucnal, “Simultaneous all-optical 3R regeneration of multiple WDM channels,” in Lasers & Electro Optics Society 18th Annu. Meeting (IEEE LEOS), Oct. 2005, pp. 59–61.
  6. M. Rochette, J. L. Blows, and B. J. Eggleton, “3R optical regeneration: An all-optical solution with BER improvement,” Opt. Express, vol. 14, no. 14, pp. 6414–6427, July2006. [CrossRef] [PubMed]
  7. S. J. Ben Yoo, “All-optical regeneration for ultra-long fiber links and its prospects for future applications with new modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2009, OThS4.
  8. M. Funabashi, Z. Zhu, Z. Pan, B. Xiang, S. J. B. Yoo, D. L. Harris, and L. Paraschis, “First field demonstrations of 1000-hop cascaded all-optical 3R regeneration in 10 Gb/s NRZ transmission,” in Conf. on Lasers and Electro-Optics (CLEO), 2006.
  9. T. Kise, K. N. Nguyen, J. M. Garcia, H. N. Poulsen, and D. J. Blumenthal, “Cascadability properties of MZI-SOA-based all-optical 3R regenerators for RZ-DPSK signals,” Opt. Express, vol. 19, no. 10, pp. 9330–9335, Apr.2011. [CrossRef] [PubMed]
  10. S. Azodolmolky, M. Klinkowski, E. Marín-Tordera, D. Careglio, J. Solé-Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” J. Comput. Netw., vol. 53, no. 7, pp. 926–944, May2009. [CrossRef]
  11. C. V. Saradhi and S. Subramaniam, “Physical layer impairment aware routing (PLIAR) in WDM optical networks: Issues and challenges,” IEEE Commun. Surv. Tutorials, vol. 11, no. 4, pp. 109–130, Dec.2009. [CrossRef]
  12. G. Shen and R. S. Tucker, “Translucent optical networks: The way forward [topics in optical communications],” IEEE Commun. Mag., vol. 45, no. 2, pp. 48–54, Feb.2007. [CrossRef]
  13. B. Lavigne, F. Leplingard, L. Lorcy, E. Balmefrezol, J. Antona, T. Zami, and D. Bayart, “Method for the determination of a quality-of-transmission estimator along the lightpaths of partially transparent networks,” in 33rd European Conf. on Optical Communication (ECOC), 2007, vol. 3, pp. 287–288.
  14. X. Yang and B. Ramamurthy, “Sparse regeneration in translucent wavelength-routed optical networks: Architecture, network design and wavelength routing,” J. Photonic Network Commun., vol. 10, pp. 39–53, 2005. [CrossRef]
  15. W. Zhang, J. Tang, K. Nygard, and C. Wang, “REPARE: Regenerator placement and routing establishment in translucent networks,” in IEEE Int. Conf. on Global Communication (GLOBECOM), Dec. 2009.
  16. R. Muñoz, R. Martínez, and R. Casellas, “Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signalling,” IEEE Commun. Mag., vol. 47, no. 8, pp. 26–34, Aug.2009.
  17. K. Manousakis, P. Kokkinos, K. Christodoulopoulos, and E. Varvarigos, “Joint online routing, wavelength assignment and regenerator allocation in translucent optical networks,” J. Lightwave Technol., vol. 28, no. 8, pp. 1152–1163, Apr.2010. [CrossRef]
  18. Y. Lee, G. Bernstein, D. Li, and G. Martinelli, “A framework for the control of wavelength switched optical networks (WSON) with impairments,” IETF draft, 2010 [Online]. Available: http://tools.ietf.org/html/draft-ietf-ccamp-wson-impairments-08.
  19. S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic Internet,” J. Lightwave Technol., vol. 24, no. 12, pp. 4468–4492, 2006. [CrossRef]
  20. V. Chan, “Optical flow switching,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2010, OWI6.
  21. C. P. Lai, A. Shacham, and K. Bergman, “Demonstration of asynchronous operation of a multiwavelength optical packet-switched fabric,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1223–1225, Aug.2010. [CrossRef]
  22. O. Pedrola, D. Careglio, M. Klinkowski, and J. Solé-Pareta, “Offline routing and regenerator placement and dimensioning for translucent OBS networks,” J. Opt. Commun. Netw., vol. 3, no. 9, pp. 651–666, Sept.2011. [CrossRef]
  23. O. Pedrola, D. Careglio, M. Klinkowski, and J. Solé-Pareta, “Regenerator placement strategies for translucent OBS networks,” J. Lightwave Technol., vol. 29, no. 22, pp. 3408–3420, Nov.2011. [CrossRef]
  24. S. L. Danielsen, P. Hansen, and K. E. Stubkjaer, “Wavelength conversion in optical packet switching,” J. Lightwave Technol., vol. 16, no. 9, pp. 2095–2108, Dec.1998. [CrossRef]
  25. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, Dec.2000. [CrossRef]
  26. V. Eramo and M. Listanti, “Power consumption in bufferless optical packet switches in SOA technology,” J. Opt. Commun. Netw., vol. 1, no. 3, pp. B15–B29, Aug.2009. [CrossRef]
  27. D. Apostolopoulos, D. Klonidis, P. Zakynthinos, K. Vyrsokinos, N. Pleros, I. Tomkos, and H. Avramopoulos, “Cascadability performance evaluation of a new NRZ SOA–MZI wavelength converter,” IEEE Photon. Technol. Lett., vol. 21, no. 18, pp. 1341–1343, Sept.2009. [CrossRef]
  28. M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA–MZI: Theory and experiment,” J. Lightwave Technol., vol. 29, no. 10, pp. 1489–1499, May2011. [CrossRef]
  29. V. Eramo, M. Listanti, and M. Spaziani, “Resource sharing in optical packet switches with limited-range wavelength converters,” J. Lightwave Technol., vol. 23, no. 2, pp. 671–687, Feb.2005. [CrossRef]
  30. V. Eramo, M. Listanti, and P. Pacifici, “A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 340–355, Feb.2003. [CrossRef]
  31. V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” J. Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009. [CrossRef]
  32. N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec.2006. [CrossRef]
  33. N. Akar, C. Raffaelli, M. Savi, and E. Karasan, “Shared-per-wavelength asynchronous optical packet switching: A comparative analysis,” J. Comput. Netw., vol. 54, no. 13, pp. 2166–2181, Sept.2010. [CrossRef]
  34. Y. Fukushima, H. Harai, S. Arakawa, and M. Murata, “Design of wavelength-convertible edge nodes in wavelength-routed networks,” J. Opt. Netw., vol. 5, no. 3, pp. 196–209, Mar.2006. [CrossRef]
  35. H. Buchta and E. Patzak, “Analysis of the physical impairments on maximum size and throughput of SOA-based optical burst switching nodes,” J. Lightwave Technol., vol. 26, no. 16, pp. 2821–2830, Aug.2008. [CrossRef]
  36. C. Raffaelli, M. Savi, G. Tartarini, and D. Visani, “Physical path analysis in photonic switches with shared wavelength converters,” in 12th Anniversary Int. Conf. on Transparent Optical Networks (ICTON), June 2010, vol. 1, Mo.C1.5.
  37. C. Raffaelli, M. Savi, and A. Stavdas, “Multistage shared-per-wavelength optical packet switch: Heuristic scheduling algorithm and performance,” J. Lightwave Technol., vol. 27, no. 5, pp. 538–551, Mar.2009. [CrossRef]
  38. J. M. Simmons, “Analysis of wavelength conversion in all-optical express backbone networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2002, TuG2.
  39. O. Gerstel, R. Ramaswami, and S. Foster, “Merits of hybrid optical networking,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2002, TuG1.
  40. J. Junio, D. C. Kilper, and V. W. S. Chan, “Channel power excursions from single-step channel provisioning,” J. Opt. Commun. Netw., vol. 4, no. 9, pp. A1–A7, Sept.2012. [CrossRef]
  41. R. Martínez, R. Casellas, R. Munoz, and T. Tsuritani, “Experimental translucent-oriented routing for dynamic lightpath provisioning in GMPLS-enabled wavelength switched optical networks,” J. Lightwave Technol., vol. 28, no. 8, pp. 1241–1255, Apr.2010. [CrossRef]
  42. Finisar, CW tunable laser: Mod. S7500, 2012 [Online]. Available: http://www.finisar.com/products/optical-components/Tunable-Lasers/S7500.
  43. CIP-Technologies, Non-linear SOA: Mod. SOA-XN-OEC-1550, 2012 [Online]. Available: http://www.ciphotonics.com/download/datasheet/soa/SOA-XN-C-14-FCA_A.pdf.
  44. Thorlabs, High-speed SOA switch: Mod. soa1013sxs, 2012 [Online]. Available: http://www.thorlabs.us/thorProduct.cfm?partNumber=SOA1013S.
  45. Menara, Tunable OTN XFP DWDM 11.1 Gb/s transceiver with integrated G.709 and E-FEC, 2012 [Online]. Available: http://www.menaranet.com/downloads/187-04001-00_OTN_TUNABLE_XFP_10Gb.pdf.
  46. Finisar, Tunable XFP (T-XFP) transceiver, 2012 [Online]. Available: http://www.finisar.com/products/optical-modules/xfp/FTLX4213xxxxxx.
  47. Finisar, 40 Gbps-OTU3 DWDM tunable very long reach transponder, 2012 [Online]. Available: http://www.finisar.com/products/optical-modules/300-pin/53DPAAU4JBLCB.
  48. J. A. Summers, M. L. Masanovic, V. Lal, and D. J. Blumenthal, “Monolithically integrated multi-stage all-optical 10 Gbps push–pull wavelength converter,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2007, OthT2.
  49. JDSU, SG-DBR tunable laser source, 2012 [Online]. Available: http://www.acronymeo.com/jdsgtulaso24.html.
  50. Thorlabs, Booster SOA: Mod. boa1004s, 2012 [Online]. Available: http://www.thorlabs.us/thorProduct.cfm?partNumber=BOA1004S.
  51. D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett., vol. 21, no. 19, pp. 1363–1365, Oct. 2009. [CrossRef]
  52. V. Eramo, A. Germoni, A. Cianfrani, M. Listanti, and C. Raffaelli, “Evaluation of power consumption in low spatial complexity optical switching fabrics,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 396–405, Mar./Apr.2011. [CrossRef]
  53. S. Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester, C. Mauz, M. Jaeger, R. Inkret, B. Mikac, and J. Derkacz, “Pan-European optical transport networks: An availability-based comparison,” J. Photonic Network Commun., vol. 5, no. 3, pp. 203–225. [CrossRef]
  54. S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0—Survivable network design library,” in Proc. INOC, 2007.
  55. Z. Rosberg, H. L. Vu, M. Zukerman, and J. White, “Performance analyses of optical burst-switching networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1187–1197, Sept.2003. [CrossRef]
  56. O. Pedrola, S. Rumley, M. Klinkowski, D. Careglio, C. Gaumier, and J. Solé-Pareta, “JAVOBS: A flexible simulator for OBS network architectures,” J. Networks, vol. 5, no. 2, pp. 256–264, Feb.2010.
  57. IBM, ILOG CPLEX, 2012 [Online]. Available: http://www-01.ibm.com/software/integration/optimization/cplex/.
  58. O. Pedrola, D. Careglio, M. Klinkowski, and J. Solé-Pareta, “Translucent OBS network architectures with dedicated and shared wavelength resources,” in 16th European Conf. on Networks and Optical Communications (NOC), July 2011.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited