OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 4 — Apr. 1, 2013
  • pp: 283–293

Impairment-Aware Optical Network Virtualization in Single-Line-Rate and Mixed-Line-Rate WDM Networks

Shuping Peng, Reza Nejabati, and Dimitra Simeonidou  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 4, pp. 283-293 (2013)
http://dx.doi.org/10.1364/JOCN.5.000283


View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical network virtualization enables network operators to compose and operate multiple independent and application-specific virtual optical networks (VONs) sharing a common physical infrastructure. To achieve this capability, the virtualization mechanism must guarantee isolation between coexisting VONs. In order to satisfy this fundamental requirement, the VON composition mechanism must take into account the impact of physical layer impairments (PLIs). In this paper we propose a new infrastructure as a service architecture utilizing optical network virtualization. We introduce novel PLI-aware VON composition algorithms suitable for single-line-rate (SLR) and mixed-line-rate (MLR) network scenarios. In order to assess the impact of PLIs and guarantee the isolation of multiple coexisting VONs, PLI assessment models for intra- and inter-VON impairments are proposed and adopted in the VON composition process for both SLR and MLR networks. In the SLR networks, the PLI-aware VON composition mechanisms with both heuristic and optimal (MILP) mapping methods are proposed. A replanning strategy is proposed for the MILP mapping method in order to increase its efficiency. In the MLR networks, a new virtual link mapping method suitable for the MLR network scenario and two line rate distribution methods are proposed. With the proposed PLI-aware VON composition methods, multiple coexisting and cost-effective VONs with guaranteed transmission quality can be dynamically composed. We evaluate and compare the performance of the proposed VON composition methods through extensive simulation studies with various network scenarios.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: September 21, 2012
Revised Manuscript: December 18, 2012
Manuscript Accepted: December 19, 2012
Published: March 14, 2013

Citation
Shuping Peng, Reza Nejabati, and Dimitra Simeonidou, "Impairment-Aware Optical Network Virtualization in Single-Line-Rate and Mixed-Line-Rate WDM Networks," J. Opt. Commun. Netw. 5, 283-293 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-4-283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Cisco visual networking index: forecast and methodology,” 2009–2014, Cisco White Paper.
  2. C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud computing: a view of scientific applications,” in Proc. I-SPAN, Dec. 2009, pp. 4–16.
  3. C. Develder, M. De Leenheer, B. Dhoedt, M. Pickavet, D. Colle, F. De Turck, and P. Demeester, “Optical networks for grid and cloud computing applications,” Proc. IEEE, vol.  100, no. 5, pp. 1149–1167, 2012. [CrossRef]
  4. S. Figuerola and M. Lemay, “Infrastructure services for optical networks (Invited),” J. Opt. Commun. Netw., vol.  1, no. 2, pp. A247–A257, 2009. [CrossRef]
  5. M. Ritter, “Virtualized optical networks for sustainable cloud services,” ADVA Optical Networking White Paper, Jan. 2010.
  6. N. M. Mosharaf, K. Chowdhury, and R. Boutaba, “A survey of network virtualization,” Comput. Netw., vol.  54, no. 5, pp. 862–876, Apr. 2010. [CrossRef]
  7. A. Pagès, J. A. García-Espín, J. Perelló, J. Ferrer Riera, S. Spadaro, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. ONDM, Apr. 2012.
  8. A. Tzanakaki, M. P. Anastasopoulos, K. Georgakilas, J. Buysse, M. De Leenheer, C. Develder, S. Peng, R. Nejabati, E. Escalona, D. Simeonidou, N. Ciulli, G. Landi, M. Brogle, A. Manfredi, E. Lopez, J. F. Riera, J. A. Garcia-Espin, P. Donadio, G. Parladori, and J. Jimenez, “Energy efficiency in integrated IT and optical network infrastructures: the GEYSERS approach,” in Proc. IEEE INFOCOM, 2011, pp. 343–348.
  9. C. V. Saradhi and S. Subramaniam, “Physical layer impairment aware routing (PLIAR) in WDM optcial networks: issues and challenges,” IEEE Commun. Surv. Tutorials, vol.  11, no. 4, pp. 109–130, 2009. [CrossRef]
  10. S. Peng, R. Nejabati, S. Azodolmolky, E. Escalona, and D. Simeonidou, “An impairment-aware virtual optical network composition mechanism for future Internet,” Opt. Express, vol.  19, no. 26, pp. B251–B259, Dec. 2011. [CrossRef]
  11. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009. [CrossRef]
  12. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol.  28, no. 4, pp. 466–475, Feb. 2010. [CrossRef]
  13. S. Peng, R. Nejabati, S. Azodolmolky, E. Escalona, and D. Simeonidou, “Virtual optical network composition over single-line-rate and mixed-line-rate WDM optical networks,” in Proc. OFC/NFOEC, Mar. 2012.
  14. E. Escalona, S. Peng, R. Nejabati, D. Simeonidou, J. A. Garcia-Espin, J. Ferrer, S. Figuerola, G. Landi, N. Ciulli, J. Jimenez, B. Belter, Y. Demechenko, C. de Laat, X. Chen, A. Yukan, S. Soudan, P. Vicat-Blanc, J. Buysse, M. De Leenheer, C. Develder, A. Tzanakaki, P. Robinson, M. Brogle, and T. M. Bohnert, “GEYSERS: a novel architecture for virtualization and co-provisioning of dynamic optical networks and IT services,” in Proc. FNMS, 2011.
  15. S. Peng, R. Nejabati, E. Escalona, D. Simeonidou, M. Anastasopoulos, K. Georgakilas, A. Tzanakaki, and A. Vernitski, “performance modelling and analysis of dynamic virtual optical network composition,” in Proc. ONDM, Apr. 2012.
  16. R. Nejabati, E. Escalona, S. Peng, and D. Simeonidou, “Optical network virtualization (Invited),” in Proc. ONDM, Feb. 2011.
  17. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, vol.  94, no. 5, pp. 952–985, May 2006. [CrossRef]
  18. W. Lin, “Physically aware agile optical networks,” Ph.D. dissertation, Montana State University—Bozeman, Bozeman, MT, 2008.
  19. N. Sambo, M. Secondini, F. Cugini, G. Bottari, P. Iovanna, F. Cavaliere, and P. Castoldi, “Modeling and distributed provisioning in 10–40–100  Gb/s multirate wavelength switched optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1248–1257, May 2011. [CrossRef]
  20. F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, “Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks,” J. Lightwave Technol., vol.  26, no. 19, pp. 3318–3328, Oct. 2008. [CrossRef]
  21. P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol., vol.  9, no. 11, pp. 1576–1582, 1991. [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.San Diego, CA: Academic, 2000.
  23. X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” Comput. Commun. Rev., vol.  41, no. 2, pp. 38–47, 2011. [CrossRef]
  24. G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A. M. Levine, “Multicast routing algorithms based on Q-factor physical layer constraints in metro networks,” IEEE Photon. Technol. Lett., vol.  21, no. 6, pp. 365–367, 2009. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited